944 research outputs found

    Minimal Surfaces in Sub-Riemannian Structures and Functional Geometry of the Visual Cortex

    Get PDF
    We develop geometrical models of vision consistent with the characteristics of the visual cortex and study geometric flows in the relevant model geometries. We provide a novel sub-Riemannian model of the primary visual cortex, which models orientation-frequency selective phase shifted cortex cell behavior and the associated horizontal connectivity. We develop an image enhancement algorithm using sub-Riemannian diffusion and Laplace-Beltrami flow in the model framework. We provide two geometric models for multi-scale orientation map and orientation-frequency preference map construction which employ Bargmann transform in high dimensional cortical spaces. We prove the uniqueness of the solution to sub-Riemannian mean curvature flow equation in the Heisenberg group geometry. An iterative diffusion process followed by a maximum selection mechanism was proposed by Citti and Sarti in the sub-Riemannian setting of the roto-translation group. They conjectured that this two-fold procedure is equivalent to a mean curvature flow. However a complete proof was missing, even in the Euclidean setting. We prove in the Euclidean setting that this two fold procedure is equivalent to mean curvature flow

    G-Complexity, Quantum Computation and Anticipatory Processes

    Get PDF

    Neural Connectivity with Hidden Gaussian Graphical State-Model

    Full text link
    The noninvasive procedures for neural connectivity are under questioning. Theoretical models sustain that the electromagnetic field registered at external sensors is elicited by currents at neural space. Nevertheless, what we observe at the sensor space is a superposition of projected fields, from the whole gray-matter. This is the reason for a major pitfall of noninvasive Electrophysiology methods: distorted reconstruction of neural activity and its connectivity or leakage. It has been proven that current methods produce incorrect connectomes. Somewhat related to the incorrect connectivity modelling, they disregard either Systems Theory and Bayesian Information Theory. We introduce a new formalism that attains for it, Hidden Gaussian Graphical State-Model (HIGGS). A neural Gaussian Graphical Model (GGM) hidden by the observation equation of Magneto-encephalographic (MEEG) signals. HIGGS is equivalent to a frequency domain Linear State Space Model (LSSM) but with sparse connectivity prior. The mathematical contribution here is the theory for high-dimensional and frequency-domain HIGGS solvers. We demonstrate that HIGGS can attenuate the leakage effect in the most critical case: the distortion EEG signal due to head volume conduction heterogeneities. Its application in EEG is illustrated with retrieved connectivity patterns from human Steady State Visual Evoked Potentials (SSVEP). We provide for the first time confirmatory evidence for noninvasive procedures of neural connectivity: concurrent EEG and Electrocorticography (ECoG) recordings on monkey. Open source packages are freely available online, to reproduce the results presented in this paper and to analyze external MEEG databases

    Stochastic models for near-synchronous neuronal firing activity

    Get PDF
    It is commonly agreed that cortical information processing is based on the electric discharges (spikes') of nerve cells. Evidence is accumulating which suggests that the temporal interaction among a large number of neurons can take place with high precision, indicating that the efficiency of cortical processing may depend crucially on the precise spike timing of many cells. This work focuses on two temporal properties of parallel spike trains that attracted growing interest in the recent years: In the first place, specific delays (phase offsets') between the firing times of two spike trains are investigated. In particular, it is studied whether small phase offsets can be identified with confidence between two spike trains that have the tendency to fire almost simultaneously. Second, the temporal relations between multiple spike trains are investigated on the basis of such small offsets between pairs of processes. Since the analysis of all delays among the firing activity of n neurons is extremely complex, a method is required with which this highly dimensional information can be collapsed in a straightforward manner such that the temporal interaction among a large number of neurons can be represented consistently in a single temporal map. Finally, a stochastic model is presented that provides a framework to integrate and explain the observed temporal relations that result from the previous analyses.Aktuelle neurophysiologische Studien liefern Hinweise darauf, dass neuronale Informationsverarbeitung auf Mechanismen basiert, die mit hoher zeitlicher Präzision ablaufen. In dieser Arbeit werden drei Ansätze vorgestellt, mit denen die zeitliche Koordination der Feueraktivität von n parallelen Spike Trains statistisch analysiert und modelliert werden kann. Der erste Teil stellt eine Methode vor, mit der eine spezifische Verzögerung (die Phase') zwischen zwei parallelen Spike Trains gemessen werden kann. Inbesondere wird die Genauigkeit untersucht, mit der die Phase bei solchen Spike Trains bestimmt werden kann, die die Tendenz haben, dahezu simultan zu feuern. Im zweiten Teil wird ein Modell vorgestellt, mit dessen Hilfe untersucht werden soll, ob sich die zwischen n Spike Trains paarweise gemessenen Phasen in einer konsistenten, niederdimensionalen Darstellung erfassen lassen, in welcher jedem Prozess ein Punkt auf der Zeitachse zugeordnet wird. Im dritten Teil schließlich wird ein stochastisches Modell für n parallele Spike Trains mit koordinierter rhythmischer Feueraktivität präsentiert, in dessen Rahmen die in den vorherigen Analysen beobachteten zeitlichen Beziehungen integriert und erklärt werden
    • …
    corecore