123,961 research outputs found

    LSTM Deep Neural Networks Postfiltering for Improving the Quality of Synthetic Voices

    Full text link
    Recent developments in speech synthesis have produced systems capable of outcome intelligible speech, but now researchers strive to create models that more accurately mimic human voices. One such development is the incorporation of multiple linguistic styles in various languages and accents. HMM-based Speech Synthesis is of great interest to many researchers, due to its ability to produce sophisticated features with small footprint. Despite such progress, its quality has not yet reached the level of the predominant unit-selection approaches that choose and concatenate recordings of real speech. Recent efforts have been made in the direction of improving these systems. In this paper we present the application of Long-Short Term Memory Deep Neural Networks as a Postfiltering step of HMM-based speech synthesis, in order to obtain closer spectral characteristics to those of natural speech. The results show how HMM-voices could be improved using this approach.Comment: 5 pages, 5 figure

    Head motion synthesis: evaluation and a template motion approach

    Get PDF
    The use of conversational agents has increased across the world. From providing automated support for companies to being virtual psychologists they have moved from an academic curiosity to an application with real world relevance. While many researchers have focused on the content of the dialogue and synthetic speech to give the agents a voice, more recently animating these characters has become a topic of interest. An additional use for character animation technology is in the film and video game industry where having characters animated without needing to pay for expensive labour would save tremendous costs. When animating characters there are many aspects to consider, for example the way they walk. However, to truly assist with communication automated animation needs to duplicate the body language used when speaking. In particular conversational agents are often only an animation of the upper parts of the body, so head motion is one of the keys to a believable agent. While certain linguistic features are obvious, such as nodding to indicate agreement, research has shown that head motion also aids understanding of speech. Additionally head motion often contains emotional cues, prosodic information, and other paralinguistic information. In this thesis we will present our research into synthesising head motion using only recorded speech as input. During this research we collected a large dataset of head motion synchronised with speech, examined evaluation methodology, and developed a synthesis system. Our dataset is one of the larger ones available. From it we present some statistics about head motion in general. Including differences between read speech and story telling speech, and differences between speakers. From this we are able to draw some conclusions as to what type of source data will be the most interesting in head motion research, and if speaker-dependent models are needed for synthesis. In our examination of head motion evaluation methodology we introduce Forced Canonical Correlation Analysis (FCCA). FCCA shows the difference between head motion shaped noise and motion capture better than standard methods for objective evaluation used in the literature. We have shown that for subjective testing it is best practice to use a variation of MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) based testing, adapted for head motion. Through experimentation we have developed guidelines for the implementation of the test, and the constraints on the length. Finally we present a new system for head motion synthesis. We make use of simple templates of motion, automatically extracted from source data, that are warped to suit the speech features. Our system uses clustering to pick the small motion units, and a combined HMM and GMM based approach for determining the values of warping parameters at synthesis time. This results in highly natural looking motion that outperforms other state of the art systems. Our system requires minimal human intervention and produces believable motion. The key innovates were the new methods for segmenting head motion and creating a process similar to language modelling for synthesising head motion

    Speech enhancement using deep learning

    Get PDF
    This thesis explores the possibility to achieve enhancement on noisy speech signals using Deep Neural Networks. Signal enhancement is a classic problem in speech processing. In the last years, researches using deep learning has been used in many speech processing tasks since they have provided very satisfactory results. As a first step, a Signal Analysis Module has been implemented in order to calculate the magnitude and phase of each audio file in the database. The signal is represented into its magnitude and its phase, where the magnitude is modified by the neural network, and then it is reconstructed with the original phase. The implementation of the Neural Networks is divided into two stages.The first stage was the implementation of a Speech Activity Detection Deep Neural Network (SAD-DNN). The magnitude previously calculated, applied to the noisy data, will train the SAD-DNN in order to classify each frame in speech or non-speech. This classification is useful for the network that does the final cleaning. The Speech Activity Detection Deep Neural Network is followed by a Denoising Auto-Encoder (DAE). The magnitude and the label speech or non-speech will be the input of this second Deep Neural Network in charge of denoising the speech signal. The first stage is also optimized to be adequate for the final task in this second stage. In order to do the training, Neural Networks require datasets. In this project the Timit corpus [9] has been used as dataset for the clean voice (target) and the QUT-NOISE TIMIT corpus[4] as noisy dataset (source). Finally, Signal Synthesis Module reconstructs the clean speech signal from the enhanced magnitudes and the phase. In the end, the results provided by the system have been analysed using both objective and subjective measures.Esta tesis explora la posibilidad de conseguir mejorar señales de voz con ruido utilizando Redes Neuronales Profundas. La mejora de señales es un problema clásico del procesado de señal, pero recientemente se esta investigando con deep learning, ya que son técnicas que han dado resultados muy satisfactorios en muchas tareas del procesado de señal. Como primer paso, se ha implementado un Módulo de Análisis de Señal con el objetivo de extraer el módulo y fase de cada archivo de voz de la base de datos. La señal se representa en módulo y fase, donde el módulo se modifica con la red neuronal y posteriormente se reconstruye con la fase original. La implementación de la Red Neuronal consta de dos etapas. En la primera etapa se implementó una Red Neuronal de Detección de Actividad de Voz. El módulo previamente calculado, aplicado a los datos con ruido, se utiliza como entrada para entrenar esta red, de manera que se consigue clasificar cada trama en voz o no voz. Esta clasificación es útil para la red que se encarga de hacer la limpieza. A continuación de la Red Neuronal de Detección de Actividad de Voz se implementa otra, con el objetivo de eliminar el ruido. El módulo junto con la etiqueta obtenida en la red anterior serán la entrada de esta nueva red. En esta segunda etapa también se optimiza la primera para adaptarse a la tarea final. Las Redes Neuronales requieren bases de datos para el entrenamiento. En este proyecto se ha utilizado el Timit corpus [9] como base de datos de voz limpia (objetivo) y el QUT-NOISE TIMIT [4] como base de datos con ruido (fuente). A continuación, el Módulo de Síntesis de Señal reconstruye la señal de voz limpia a partir del módulo sin ruido y la fase original.Aquesta tesis explora la possibilitat d'aconseguir millorar senyals de veu amb soroll, utilitzant Xarxes Neuronals Profundes. La millora de senyals és un problema clàssic del processat de senyal, però recentment s'està investigant amb deep learning, ja que són tècniques que han donat resultats molt satisfactoris en moltes tasques de processament de veu. Com a primer pas, s'ha implementat un Mòdul d'Anàlisi de Senyal amb l'objectiu d'extreure el mòdul i la fase de cada arxiu d'àudio de la base de dades. El senyal es representa en mòdul i fase, on el mòdul es modifica amb la xarxa neuronal i posteriorment es reconstrueix amb la fase original. La implementació de les Xarxes Neuronals consta de dues etapes. En la primera etapa es va implementar una Xarxa Neuronal de Detecció d'Activitat de Veu. El mòdul prèviament calculat, aplicat a les dades amb soroll, s'utilitza com entrada per entrenar aquesta xarxa, de manera que s'aconsegueix classificar cada trama en veu o no veu. Aquesta classificació és útil per la xarxa que fa la neteja final. A continuació de la Xarxa Neuronal de Detecció d'Activitat de Veu s'implementa una altra amb l'objectiu d'eliminar el soroll. El mòdul, juntament amb la etiqueta obtinguda en la xarxa anterior, seran l'entrada d'aquesta nova xarxa. En aquesta segona etapa també s'optimitza la primera per adaptar-se a la tasca final. Les Xarxes Neuronals requereixen bases de dades per fer l'entrenament. En aquest projecte s'ha utilitzat el Timit corpus [9] com a base de dades de veu neta (objectiu) i el QUT-NOISE TIMIT[4] com a base de dades amb soroll (font). A continuació, el Mòdul de Síntesi de Senyal reconstrueix el senyal de veu net a partir del mòdul netejat i la fase original. Finalment, els resultats obtinguts del sistema van ser analitzats utilitzant mesures objectives i subjectives
    corecore