21,918 research outputs found

    On a region-of-interest based approach to robust wireless video transmission

    Get PDF
    This paper presents a scheme aiming at transmitting real-time video to wireless channel with vigorously varying quality, which is in practice the norm rather than the exception. Region of Interest (ROI) is an efficient approach to making the video more adaptive to the wireless channel because ROI is the region that human eyes tend to put more attention to than the Remainder Region (RM). In our proposed scheme, we will adopt this feature. The real-time source video stream is divided into two regions, the ROI and the RM regions. The two regions will be encoded using H.263 standard codec such that the video transmission is adaptive to the current channel state, which is characterized by the effective data rate that varies from tens of kilobits per second to hundreds of kilobits per second. Channel state parameters are fed back to the source coder to adjust the compression ratio as well as the intra/inter options of the encoders. Results including frame loss probability, compression characteristics, Peak Signal the Noise Ratio (PSNR) against channel states are given, indicating that the resulting adaptive video codec can respond judiciously to time-varying channel quality. Our scheme is evaluated together with a ROI-enabled moving picture coding standard JPEG2000. Using the features provided in JPEG2000, we have made the JPEG2000 codec adaptive to the vigorously varying wireless channel and then compared it with the H.263 scheme. Our technique is suitable for a broad area of applications including real-time news reporting and video conferencing.published_or_final_versio

    Wireless aquatic navigator for detection and analysis (WANDA)

    Get PDF
    The cost of monitoring and detecting pollutants in natural waters is of major concern. Current and forthcoming bodies of legislation will continue to drive demand for spatial and selective monitoring of our environment, as the focus increasingly moves towards effective enforcement of legislation through detection of events, and unambiguous identification of perpetrators. However, these monitoring demands are not being met due to the infrastructure and maintenance costs of conventional sensing models. Advanced autonomous platforms capable of performing complex analytical measurements at remote locations still require individual power, wireless communication, processor and electronic transducer units, along with regular maintenance visits. Hence the cost base for these systems is prohibitively high, and the spatial density and frequency of measurements are insufficient to meet requirements. In this paper we present a more cost effective approach for water quality monitoring using a low cost mobile sensing/communications platform together with very low cost stand-alone ‘satellite’ indicator stations that have an integrated colorimetric sensing material. The mobile platform is equipped with a wireless video camera that is used to interrogate each station to harvest information about the water quality. In simulation experiments, the first cycle of measurements is carried out to identify a ‘normal’ condition followed by a second cycle during which the platform successfully detected and communicated the presence of a chemical contaminant that had been localised at one of the satellite stations

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Feedforward data-aided phase noise estimation from a DCT basis expansion

    Get PDF
    This contribution deals with phase noise estimation from pilot symbols. The phase noise process is approximated by an expansion of discrete cosine transform (DCT) basis functions containing only a few terms. We propose a feedforward algorithm that estimates the DCT coefficients without requiring detailed knowledge about the phase noise statistics. We demonstrate that the resulting (linearized) mean-square phase estimation error consists of two contributions: a contribution from the additive noise, that equals the Cramer-Rao lower bound, and a noise independent contribution, that results front the phase noise modeling error. We investigate the effect of the symbol sequence length, the pilot symbol positions, the number of pilot symbols, and the number of estimated DCT coefficients it the estimation accuracy and on the corresponding bit error rate (PER). We propose a pilot symbol configuration allowing to estimate any number of DCT coefficients not exceeding the number of pilot Symbols, providing a considerable Performance improvement as compared to other pilot symbol configurations. For large block sizes, the DCT-based estimation algorithm substantially outperforms algorithms that estimate only the time-average or the linear trend of the carrier phase. Copyright (C) 2009 J. Bhatti and M. Moeneclaey

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable públic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version
    corecore