14,416 research outputs found

    Lam\'e polynomials, hyperelliptic reductions and Lam\'e band structure

    Full text link
    The band structure of the Lam\'e equation, viewed as a one-dimensional Schr\"odinger equation with a periodic potential, is studied. At integer values of the degree parameter l, the dispersion relation is reduced to the l=1 dispersion relation, and a previously published l=2 dispersion relation is shown to be partially incorrect. The Hermite-Krichever Ansatz, which expresses Lam\'e equation solutions in terms of l=1 solutions, is the chief tool. It is based on a projection from a genus-l hyperelliptic curve, which parametrizes solutions, to an elliptic curve. A general formula for this covering is derived, and is used to reduce certain hyperelliptic integrals to elliptic ones. Degeneracies between band edges, which can occur if the Lam\'e equation parameters take complex values, are investigated. If the Lam\'e equation is viewed as a differential equation on an elliptic curve, a formula is conjectured for the number of points in elliptic moduli space (elliptic curve parameter space) at which degeneracies occur. Tables of spectral polynomials and Lam\'e polynomials, i.e., band edge solutions, are given. A table in the older literature is corrected.Comment: 38 pages, 1 figure; final revision

    Vanishing Twist in the Hamiltonian Hopf Bifurcation

    Get PDF
    The Hamiltonian Hopf bifurcation has an integrable normal form that describes the passage of the eigenvalues of an equilibrium through the 1: -1 resonance. At the bifurcation the pure imaginary eigenvalues of the elliptic equilibrium turn into a complex quadruplet of eigenvalues and the equilibrium becomes a linearly unstable focus-focus point. We explicitly calculate the frequency map of the integrable normal form, in particular we obtain the rotation number as a function on the image of the energy-momentum map in the case where the fibres are compact. We prove that the isoenergetic non-degeneracy condition of the KAM theorem is violated on a curve passing through the focus-focus point in the image of the energy-momentum map. This is equivalent to the vanishing of twist in a Poincar\'e map for each energy near that of the focus-focus point. In addition we show that in a family of periodic orbits (the non-linear normal modes) the twist also vanishes. These results imply the existence of all the unusual dynamical phenomena associated to non-twist maps near the Hamiltonian Hopf bifurcation.Comment: 18 pages, 4 figure
    • …
    corecore