4,591 research outputs found

    Applying Prolog to Develop Distributed Systems

    Get PDF
    Development of distributed systems is a difficult task. Declarative programming techniques hold a promising potential for effectively supporting programmer in this challenge. While Datalog-based languages have been actively explored for programming distributed systems, Prolog received relatively little attention in this application area so far. In this paper we present a Prolog-based programming system, called DAHL, for the declarative development of distributed systems. DAHL extends Prolog with an event-driven control mechanism and built-in networking procedures. Our experimental evaluation using a distributed hash-table data structure, a protocol for achieving Byzantine fault tolerance, and a distributed software model checker - all implemented in DAHL - indicates the viability of the approach

    Facilitating the modelling and automated analysis of cryptographic protocols

    Get PDF
    Includes bibliographical references.Multi-dimensional security protocol engineering is effective for creating cryptographic protocols since it encompasses a variety of design, analysis and deployment techniques, thereby providing a higher level of confidence than individual approaches. SPEAR II, the Security Protocol Engineering and Analysis Resource n, is a protocol engineering tool built on the foundation of previous experience garnered during the SPEAR I project in 1997. The goal of the SPEAR II tool is to facilitate cryptographic protocol engineering and aid users in distilling the critical issues during an engineering session by presenting them with an appropriate level of detail and guiding them as much as possible. The SPEAR II tool currently consists of four components that have been created as part of this dissertation and integrated into one consistent and unified graphical interface: a protocol specification environment (GYPSIE), a GNY statement construction interface (Visual GNY), a Prolog-based GNY analysis engine (GYNGER) and a message rounds calculator

    Teaching programming at a distance: the Internet software visualization laboratory

    Get PDF
    This paper describes recent developments in our approach to teaching computer programming in the context of a part-time Masters course taught at a distance. Within our course, students are sent a pack which contains integrated text, software and video course material, using a uniform graphical representation to tell a consistent story of how the programming language works. The students communicate with their tutors over the phone and through surface mail. Through our empirical studies and experience teaching the course we have identified four current problems: (i) students' difficulty mapping between the graphical representations used in the course and the programs to which they relate, (ii) the lack of a conversational context for tutor help provided over the telephone, (iii) helping students who due to their other commitments tend to study at 'unsociable' hours, and (iv) providing software for the constantly changing and expanding range of platforms and operating systems used by students. We hope to alleviate these problems through our Internet Software Visualization Laboratory (ISVL), which supports individual exploration, and both synchronous and asynchronous communication. As a single user, students are aided by the extra mappings provided between the graphical representations used in the course and their computer programs, overcoming the problems of the original notation. ISVL can also be used as a synchronous communication medium whereby one of the users (generally the tutor) can provide an annotated demonstration of a program and its execution, a far richer alternative to technical discussions over the telephone. Finally, ISVL can be used to support asynchronous communication, helping students who work at unsociable hours by allowing the tutor to prepare short educational movies for them to view when convenient. The ISVL environment runs on a conventional web browser and is therefore platform independent, has modest hardware and bandwidth requirements, and is easy to distribute and maintain. Our planned experiments with ISVL will allow us to investigate ways in which new technology can be most appropriately applied in the service of distance education

    Memory performance of and-parallel prolog on shared-memory architectures

    Get PDF
    The goal of the RAP-WAM AND-parallel Prolog abstract architecture is to provide inference speeds significantly beyond those of sequential systems, while supporting Prolog semantics and preserving sequential performance and storage efficiency. This paper presents simulation results supporting these claims with special emphasis on memory performance on a two-level sharedmemory multiprocessor organization. Several solutions to the cache coherency problem are analyzed. It is shown that RAP-WAM offers good locality and storage efficiency and that it can effectively take advantage of broadcast caches. It is argued that speeds in excess of 2 ML IPS on real applications exhibiting medium parallelism can be attained with current technology

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    An extensible web interface for databases and its application to storing biochemical data

    Full text link
    This paper presents a generic web-based database interface implemented in Prolog. We discuss the advantages of the implementation platform and demonstrate the system's applicability in providing access to integrated biochemical data. Our system exploits two libraries of SWI-Prolog to create a schema-transparent interface within a relational setting. As is expected in declarative programming, the interface was written with minimal programming effort due to the high level of the language and its suitability to the task. We highlight two of Prolog's features that are well suited to the task at hand: term representation of structured documents and relational nature of Prolog which facilitates transparent integration of relational databases. Although we developed the system for accessing in-house biochemical and genomic data the interface is generic and provides a number of extensible features. We describe some of these features with references to our research databases. Finally we outline an in-house library that facilitates interaction between Prolog and the R statistical package. We describe how it has been employed in the present context to store output from statistical analysis on to the database.Comment: Online proceedings of the Joint Workshop on Implementation of Constraint Logic Programming Systems and Logic-based Methods in Programming Environments (CICLOPS-WLPE 2010), Edinburgh, Scotland, U.K., July 15, 201

    A simple approach to distributed objects in prolog

    Full text link
    We present the design of a distributed object system for Prolog, based on adding remote execution and distribution capabilities to a previously existing object system. Remote execution brings RPC into a Prolog system, and its semantics is easy to express in terms of well-known Prolog builtins. The final distributed object design features state mobility and user-transparent network behavior. We sketch an implementation which provides distributed garbage collection and some degree of tolerance to network failures. We provide a preliminary study of the overhead of the communication mechanism for some test cases

    Implementing distributed concurrent constraint execution in the CIAO system

    Full text link
    This paper describes the current prototype of the distributed CIAO system. It introduces the concepts of "teams" and "active modules" (or active objects), which conveniently encapsulate different types of functionalities desirable from a distributed system, from parallelism for achieving speedup to client-server applications. The user primitives available are presented and their implementation described. This implementation uses attributed variables and, as an example of a communication abstraction, a blackboard that follows the Linda model. Finally, the CIAO WWW interface is also briefly described. The unctionalities of the system are illustrated through examples, using the implemented primitives

    A generic persistence model for CLP systems (and two useful implementations)

    Get PDF
    This paper describes a model of persistence in (C)LP languages and two different and practically very useful ways to implement this model in current systems. The fundamental idea is that persistence is a characteristic of certain dynamic predicates (Le., those which encapsulate state). The main effect of declaring a predicate persistent is that the dynamic changes made to such predicates persist from one execution to the next one. After proposing a syntax for declaring persistent predicates, a simple, file-based implementation of the concept is presented and some examples shown. An additional implementation is presented which stores persistent predicates in an external datábase. The abstraction of the concept of persistence from its implementation allows developing applications which can store their persistent predicates alternatively in files or databases with only a few simple changes to a declaration stating the location and modality used for persistent storage. The paper presents the model, the implementation approach in both the cases of using files and relational databases, a number of optimizations of the process (using information obtained from static global analysis and goal clustering), and performance results from an implementation of these ideas
    corecore