7,687 research outputs found

    On a graph-theoretical model for cyclic register allocation

    Get PDF
    AbstractIn the process of compiling a computer programme, we consider the problem of allocating variables to registers within a loop. It can be formulated as a coloring problem in a circular arc graph (intersection graph of a family F of intervals on a circle). We consider the meeting graph of F introduced by Eisenbeis, Lelait and Marmol. Proceedings of the Fifth Workshop on Compilers for Parallel Computers, Malaga, June 1995, pp. 502–515. Characterizations of meeting graphs are developed and their basic properties are derived with graph theoretical arguments.Furthermore some properties of the chromatic number for periodic circular arc graphs are derived

    Radio Co-location Aware Channel Assignments for Interference Mitigation in Wireless Mesh Networks

    Full text link
    Designing high performance channel assignment schemes to harness the potential of multi-radio multi-channel deployments in wireless mesh networks (WMNs) is an active research domain. A pragmatic channel assignment approach strives to maximize network capacity by restraining the endemic interference and mitigating its adverse impact on network performance. Interference prevalent in WMNs is multi-faceted, radio co-location interference (RCI) being a crucial aspect that is seldom addressed in research endeavors. In this effort, we propose a set of intelligent channel assignment algorithms, which focus primarily on alleviating the RCI. These graph theoretic schemes are structurally inspired by the spatio-statistical characteristics of interference. We present the theoretical design foundations for each of the proposed algorithms, and demonstrate their potential to significantly enhance network capacity in comparison to some well-known existing schemes. We also demonstrate the adverse impact of radio co- location interference on the network, and the efficacy of the proposed schemes in successfully mitigating it. The experimental results to validate the proposed theoretical notions were obtained by running an exhaustive set of ns-3 simulations in IEEE 802.11g/n environments.Comment: Accepted @ ICACCI-201

    Pairing games and markets

    Get PDF
    Pairing Games or Markets studied here are the non-two-sided NTU generalization of assignment games. We show that the Equilibrium Set is nonempty, that it is the set of stable allocations or the set of semistable allocations, and that it has has several notable structural properties. We also introduce the solution concept of pseudostable allocations and show that they are in the Demand Bargaining Set. We give a dynamic Market Procedure that reaches the Equilibrium Set in a bounded number of steps. We use elementary tools of graph theory and a representation theorem obtained here

    A software-hardware hybrid steering mechanism for clustered microarchitectures

    Get PDF
    Clustered microarchitectures provide a promising paradigm to solve or alleviate the problems of increasing microprocessor complexity and wire delays. High- performance out-of-order processors rely on hardware-only steering mechanisms to achieve balanced workload distribution among clusters. However, the additional steering logic results in a significant increase on complexity, which actually decreases the benefits of the clustered design. In this paper, we address this complexity issue and present a novel software-hardware hybrid steering mechanism for out-of-order processors. The proposed software- hardware cooperative scheme makes use of the concept of virtual clusters. Instructions are distributed to virtual clusters at compile time using static properties of the program such as data dependences. Then, at runtime, virtual clusters are mapped into physical clusters by considering workload information. Experiments using SPEC CPU2000 benchmarks show that our hybrid approach can achieve almost the same performance as a state-of-the-art hardware-only steering scheme, while requiring low hardware complexity. In addition, the proposed mechanism outperforms state-of-the-art software-only steering mechanisms by 5% and 10% on average for 2-cluster and 4-cluster machines, respectively.Peer ReviewedPostprint (published version

    The application of genetic algorithms to high-level synthesis

    Get PDF
    corecore