4,563 research outputs found

    Analytical and experimental procedures for determining propagation characteristics of millimeter-wave gallium arsenide microstrip lines

    Get PDF
    In this report, a thorough analytical procedure is developed for evaluating the frequency-dependent loss characteristics and effective permittivity of microstrip lines. The technique is based on the measured reflection coefficient of microstrip resonator pairs. Experimental data, including quality factor Q, effective relative permittivity, and fringing for 50-omega lines on gallium arsenide (GaAs) from 26.5 to 40.0 GHz are presented. The effects of an imperfect open circuit, coupling losses, and loading of the resonant frequency are considered. A cosine-tapered ridge-guide text fixture is described. It was found to be well suited to the device characterization

    Handbook of recommended practices for the determination of liquid monopropellant rocket engine performance

    Get PDF
    The design, installation, and operation of systems to be used for directly measuring quantities of fundamental importance to the determination of monopropellant thruster performance is described. Areas covered include: (1) force and impulse measurement; (2) propellant mass usage and flow measurement; (3) pressure measurement; (4) temperature measurement; (5) exhaust gas composition measurement; and (6) data reduction and performance determination

    Methods for Determining Blood Flow Through Intact Vessels of Experimental Animals Under Conditions of Gravitational Stress and in Extra-terrestrial Space Capsules Final Report, 1 Nov. 1960 - 31 Dec. 1964

    Get PDF
    Electromagnetic blood flow meter to determine blood flow through intact vessels of test animals in gravitational stress and in extraterrestrial space capsule

    System configuration, fault detection, location, isolation and restoration: a review on LVDC Microgrid protections

    Get PDF
    Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration

    Improved Two-level Voltage Source Converter for High-Voltage Direct Current Transmission Systems

    Get PDF
    this paper presents an improved two-level voltage source converter for dc transmission systems with relatively low rated power and dc operating voltage. Unlike conventional two-level converter, the presented converter employs two distributed cell capacitors per three-phase; thus, do not contribute any current when converter is blocked during dc short circuit fault as in modular multilevel converter case. The use of three-phase cells is proven to be beneficial because the arm currents do not contain 2nd order harmonic currents, and cell capacitors tend to be small as they only experience high-order harmonic current associated with the switching frequency. For the same rated dc link voltage and switching devices, the rated power of the improved two-level converter will be twice that of the conventional two-level converter. Average, switching function and electromagnetic transient simulation models of the improved two-level converter are discussed and validated against detailed switch model. The viability of the improved two-level converter for HVDC applications is examined, considering dc and ac short circuit faults. Besides, reduced complexity of the control and power circuit of the improved two-level converter, it has been found that its transient responses to ac and dc faults are similar to that of the modular multilevel converter

    Broadband feed for a parabolic antenna for satellite tracking.

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Battery Management and Battery Modeling Considerations for Application in a Neighborhood Electric Vehicle

    Get PDF
    Transitioning from internal combustion engine vehicles (ICEVs) to electric vehicles (EVs) consolidates and relocates emissions, endeavoring to improve air quality, particularly in high traffic urban areas. Unfortunately, many obstacles to widespread EV use remain, broadly related to user familiarity, convenience, and effectiveness. However, EVs are better suited for some opportunities. Following the introduction, this thesis covers the process of upgrading a neighborhood electric vehicle (NEV) from lead-acid batteries to a swappable battery pack consisting of lithium iron phosphate (LiFePO4), or LFP, cells. Although LFP cells are considered safer than other lithium-ion cells, a new battery charger and battery management system (BMS) were installed to ensure proper function and maintenance. While the new electronics appeared to be successfully integrated during initial testing, several cells within the battery pack were over-discharged—or underwent voltage reversal—while outside during winter. Thus, prompted a reassessment of battery management practices and implementation, resulting in the construction of a new battery pack and redesign of the charge and discharge controls. The ensuing chapter pertains to battery management practices employed in the vehicle—and battery management in general. This chapter begins with background, wherein discusses fundamentals of cell function, modes of failure, and lastly, methods of obviating failure and protracting cell longevity. Finally, chapter four describes battery modeling from the perspective of a tool to maintain cells in EVs. Determination of immeasurable states that are important to battery management and consumer comfort are deliberated. Mathematical models and equivalent circuit models of cell behavior are of particular interest. Common equivalent circuit models are parameterized for several cells and voltage estimation capabilities are compared

    Fault Diagnosis and Condition Monitoring of Power Electronic Components Using Spread Spectrum Time Domain Reflectometry (SSTDR) and the Concept of Dynamic Safe Operating Area (SOA)

    Get PDF
    Title from PDF of title page viewed April 1, 2021Dissertation advisors: Faisal Khan and Yong ZengVitaIncludes bibliographical references ( page 117-132)Thesis (Ph.D.)--School of Computing and Engineering and Department of Mathematics and Statistics. University of Missouri--Kansas City, 2021Fault diagnosis and condition monitoring (CM) of power electronic components with a goal of improving system reliability and availability have been one of the major focus areas in the power electronics field in the last decades. Power semiconductor devices such as metal oxide semiconductor field-effect transistor (MOSFET) and insulated-gate bipolar transistor (IGBT) are considered to be the most fragile element of the power electronic systems and their reliability degrades with time due to mechanical and thermo-electrical stresses, which ultimately leads to a complete failure of the overall power conversion systems. Therefore, it is important to know the present state of health (SOH) of the power devices and the remaining useful life (RUL) of a power converter in order to perform preventive scheduled maintenance, which will eventually lead to increased system availability and reduced cost. In conventional practice, device aging and lifetime prediction techniques rely on the estimation of the meantime to failure (MTTF), a value that represents the expected lifespan of a device. MTTF predicts expected lifespan, but cannot adequately predict failures attributed to unusual circumstances or continuous overstress and premature degradation. This inability is due in large part to the fact that it considers the device safe operating area (SOA) or voltage and current ride-through capability to be independent of SOH. However, we experimentally proved that SOA of any semiconductor device goes down with the increased level of aging, and therefore, the probability of occurrence of over-voltage/current situation increases. As a result, the MTTF of the device as well as the overall converter reliability reduces with aging. That said, device degradation can be estimated by accomplishing an accurate online degradation monitoring tool that will determine the dynamic SOA. The correlation between aging and dynamic SOA gives us the useful remaining life of the device or the availability of a circuit. For this monitoring tool, spread spectrum time domain reflectometry (SSTDR) has been proposed and was successfully implemented in live power converters. In SSTDR, a high-frequency sine-modulated pseudo-noise sequence (SMPNS) is sent through the system, and reflections from age-related impedance discontinuities return to the test end where they are analyzed. In the past, SSTDR has been successfully used for device degradation detection in power converters while running at static conditions. However, the rapid variation in impedance throughout the entire live converter circuit caused by the fast-switching operation makes CM more challenging while using SSTDR. The algorithms and techniques developed in this project have overcome this challenge and demonstrated that the SSTDR test data are consistent with the aging of the power devices and do not affect the switching performance of the modulation process even the test signal is applied across the gate-source interface of the power MOSFET. This implies that the SSTDR technique can be integrated with the gate driver module, thereby creating a new platform for an intelligent gate-driver architecture (IGDA) that enables real-time health monitoring of power devices while performing features offered by a commercially available driver. Another application of SSTDR in power electronic systems is the ground fault prediction and detection technique for PV arrays. Protecting PV arrays from ground faults that lead to fire hazards and power loss is imperative to maintaining safe and effective solar power operations. Unlike many standard detection methods, SSTDR does not depend on fault current, therefore, can be implemented for testing ground faults at night or low illumination. However, wide variation in impedance throughout different materials and interconnections makes fault location more challenging than fault detection. This barrier was surmounted by the SSTDR-based fault detection algorithm developed in this project. The proposed algorithm was accounted for any variation in the number of strings, fault resistance, and the number of faults. In addition to its general utility for fault detection, the proposed algorithm can identify the location of multiple faults using only a single measurement point, thereby working as a preventative measure to protect the entire system at a reduced cost. Within the scope of the research work on SSTDR-based fault diagnosis and CM of power electronic components, a cell-level SOH measurement tool has been proposed that utilizes SSTDR to detect the location and aging of individual degraded cells in a large series-parallel connected Li-ion battery pack. This information of cell level SOH along with the respective cell location is critical to calculating the SOH of a battery pack and its remaining useful lifetime since the initial SOH of Li-ion cells varies under different manufacturing processes and operating conditions, causing them to perform inconsistently and thereby affect the performance of the entire battery pack in real-life applications. Unfortunately, today’s BMS considers the SOH of the entire battery pack/cell string as a single SOH and therefore, cannot monitor the SOH at the cell level. A healthy battery string has a specific impedance between the two terminals, and any aged cell in that string will change the impedance value. Since SSTDR can characterize the impedance change in its propagation path along with its location, it can successfully locate the degraded cell in a large battery pack and thereby, can prevent premature failure and catastrophic danger by performing scheduled maintenance.Introduction -- Background study and literature review -- Fundamentals of Spread Spectrum Time Domain Reflectometry (SSTDR): A new method for testing electronics live -- Accelerated aging test bench: design and implementation -- Condition monitoring of power switching in live power switching devices in live power electronic converters using SSTDR -- An irradiance-independent, robust ground-fault detection scheme for PV arrays based on SSTDR -- Detection of degraded/aged cell in a LI-Ion battery pack using SSTDR -- Dynamiv safe operating area (SOA) of power semiconductor devices -- Conclusion and future researc
    • …
    corecore