3,889 research outputs found

    Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity

    Full text link
    We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the state-complexity of representing sub- or superword closures of context-free grammars (CFGs): (1) We prove a (tight) upper bound of 2O(n)2^{\mathcal{O}(n)} on the size of nondeterministic finite automata (NFAs) representing the subword closure of a CFG of size nn. (2) We present a family of CFGs for which the minimal deterministic finite automata representing their subword closure matches the upper-bound of 22O(n)2^{2^{\mathcal{O}(n)}} following from (1). Furthermore, we prove that the inequivalence problem for NFAs representing sub- or superword-closed languages is only NP-complete as opposed to PSPACE-complete for general NFAs. Finally, we extend our results into an approximation method to attack inequivalence problems for CFGs

    Power of Counting by Nonuniform Families of Polynomial-Size Finite Automata

    Full text link
    Lately, there have been intensive studies on strengths and limitations of nonuniform families of promise decision problems solvable by various types of polynomial-size finite automata families, where "polynomial-size" refers to the polynomially-bounded state complexity of a finite automata family. In this line of study, we further expand the scope of these studies to families of partial counting and gap functions, defined in terms of nonuniform families of polynomial-size nondeterministic finite automata, and their relevant families of promise decision problems. Counting functions have an ability of counting the number of accepting computation paths produced by nondeterministic finite automata. With no unproven hardness assumption, we show numerous separations and collapses of complexity classes of those partial counting and gap function families and their induced promise decision problem families. We also investigate their relationships to pushdown automata families of polynomial stack-state complexity.Comment: (A4, 10pt, 21 pages) This paper corrects and extends a preliminary report published in the Proceedings of the 24th International Symposium on Fundamentals of Computation Theory (FCT 2023), Trier, Germany, September 18-24, 2023, Lecture Notes in Computer Science, vol. 14292, pp. 421-435, Springer Cham, 202

    Multi-Head Finite Automata: Characterizations, Concepts and Open Problems

    Full text link
    Multi-head finite automata were introduced in (Rabin, 1964) and (Rosenberg, 1966). Since that time, a vast literature on computational and descriptional complexity issues on multi-head finite automata documenting the importance of these devices has been developed. Although multi-head finite automata are a simple concept, their computational behavior can be already very complex and leads to undecidable or even non-semi-decidable problems on these devices such as, for example, emptiness, finiteness, universality, equivalence, etc. These strong negative results trigger the study of subclasses and alternative characterizations of multi-head finite automata for a better understanding of the nature of non-recursive trade-offs and, thus, the borderline between decidable and undecidable problems. In the present paper, we tour a fragment of this literature

    The Magic Number Problem for Subregular Language Families

    Full text link
    We investigate the magic number problem, that is, the question whether there exists a minimal n-state nondeterministic finite automaton (NFA) whose equivalent minimal deterministic finite automaton (DFA) has alpha states, for all n and alpha satisfying n less or equal to alpha less or equal to exp(2,n). A number alpha not satisfying this condition is called a magic number (for n). It was shown in [11] that no magic numbers exist for general regular languages, while in [5] trivial and non-trivial magic numbers for unary regular languages were identified. We obtain similar results for automata accepting subregular languages like, for example, combinational languages, star-free, prefix-, suffix-, and infix-closed languages, and prefix-, suffix-, and infix-free languages, showing that there are only trivial magic numbers, when they exist. For finite languages we obtain some partial results showing that certain numbers are non-magic.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Automata with Nested Pebbles Capture First-Order Logic with Transitive Closure

    Get PDF
    String languages recognizable in (deterministic) log-space are characterized either by two-way (deterministic) multi-head automata, or following Immerman, by first-order logic with (deterministic) transitive closure. Here we elaborate this result, and match the number of heads to the arity of the transitive closure. More precisely, first-order logic with k-ary deterministic transitive closure has the same power as deterministic automata walking on their input with k heads, additionally using a finite set of nested pebbles. This result is valid for strings, ordered trees, and in general for families of graphs having a fixed automaton that can be used to traverse the nodes of each of the graphs in the family. Other examples of such families are grids, toruses, and rectangular mazes. For nondeterministic automata, the logic is restricted to positive occurrences of transitive closure. The special case of k=1 for trees, shows that single-head deterministic tree-walking automata with nested pebbles are characterized by first-order logic with unary deterministic transitive closure. This refines our earlier result that placed these automata between first-order and monadic second-order logic on trees.Comment: Paper for Logical Methods in Computer Science, 27 pages, 1 figur
    • …
    corecore