3,424 research outputs found

    Adaptive mesh refinements for thin shells whose middle surface is not exactly known

    Get PDF
    A strategy concerning mesh refinements for thin shells computation is presented. The geometry of the shell is given only by the reduced information consisting in nodes and normals on its middle surface corresponding to a coarse mesh. The new point is that the mesh refinements are defined from several criteria, including the transverse shear forces which do not appear in the mechanical energy of the applied shell formulation. Another important point is to be able to construct the unknown middle surface at each step of the refinement. For this, an interpolation method by edges, coupled with a triangle bisection algorithm, is applied. This strategy is illustrated on various geometries and mechanical problems

    Computational design of nanophotonic structures using an adaptive finite element method

    Full text link
    We consider the problem of the construction of the nanophotonic structures of arbitrary geometry with prescribed desired properties. We reformulate this problem as an optimization problem for the Tikhonov functional which is minimized on adaptively locally refined meshes. These meshes are refined only in places where the nanophotonic structure should be designed. Our special symmetric mesh refinement procedure allows the construction of different nanophotonic structures. We illustrate efficiency of our adaptive optimization algorithm on the construction of nanophotonic structure in two dimensions
    corecore