13,982 research outputs found

    Lattice Points in Orthotopes and a Huge Polynomial Tutte Invariant of Weighted Gain Graphs

    Full text link
    A gain graph is a graph whose edges are orientably labelled from a group. A weighted gain graph is a gain graph with vertex weights from an abelian semigroup, where the gain group is lattice ordered and acts on the weight semigroup. For weighted gain graphs we establish basic properties and we present general dichromatic and forest-expansion polynomials that are Tutte invariants (they satisfy Tutte's deletion-contraction and multiplicative identities). Our dichromatic polynomial includes the classical graph one by Tutte, Zaslavsky's two for gain graphs, Noble and Welsh's for graphs with positive integer weights, and that of rooted integral gain graphs by Forge and Zaslavsky. It is not a universal Tutte invariant of weighted gain graphs; that remains to be found. An evaluation of one example of our polynomial counts proper list colorations of the gain graph from a color set with a gain-group action. When the gain group is Z^d, the lists are order ideals in the integer lattice Z^d, and there are specified upper bounds on the colors, then there is a formula for the number of bounded proper colorations that is a piecewise polynomial function of the upper bounds, of degree nd where n is the order of the graph. This example leads to graph-theoretical formulas for the number of integer lattice points in an orthotope but outside a finite number of affinographic hyperplanes, and for the number of n x d integral matrices that lie between two specified matrices but not in any of certain subspaces defined by simple row equations.Comment: 32 pp. Submitted in 2007, extensive revisions in 2013 (!). V3: Added references, clarified examples. 35 p

    Exact Renormalisation Group Equations and Loop Equations for Tensor Models

    Full text link
    In this paper, we review some general formulations of exact renormalisation group equations and loop equations for tensor models and tensorial group field theories. We illustrate the use of these equations in the derivation of the leading order expectation values of observables in tensor models. Furthermore, we use the exact renormalisation group equations to establish a suitable scaling dimension for interactions in Abelian tensorial group field theories with a closure constraint. We also present analogues of the loop equations for tensor models

    Hypercellular graphs: partial cubes without Q3Q_3^- as partial cube minor

    Full text link
    We investigate the structure of isometric subgraphs of hypercubes (i.e., partial cubes) which do not contain finite convex subgraphs contractible to the 3-cube minus one vertex Q3Q^-_3 (here contraction means contracting the edges corresponding to the same coordinate of the hypercube). Extending similar results for median and cellular graphs, we show that the convex hull of an isometric cycle of such a graph is gated and isomorphic to the Cartesian product of edges and even cycles. Furthermore, we show that our graphs are exactly the class of partial cubes in which any finite convex subgraph can be obtained from the Cartesian products of edges and even cycles via successive gated amalgams. This decomposition result enables us to establish a variety of results. In particular, it yields that our class of graphs generalizes median and cellular graphs, which motivates naming our graphs hypercellular. Furthermore, we show that hypercellular graphs are tope graphs of zonotopal complexes of oriented matroids. Finally, we characterize hypercellular graphs as being median-cell -- a property naturally generalizing the notion of median graphs.Comment: 35 pages, 6 figures, added example answering Question 1 from earlier draft (Figure 6.

    On the growth behaviour of Hironaka quotients

    Full text link
    We consider a finite analytic morphism \phi = (f,g) : (X,p)\to (\C^2,0) where (X,p)(X,p) is a complex analytic normal surface germ and ff and gg are complex analytic function germs. Let π:(Y,EY)(X,p)\pi : (Y,E_{Y})\to (X,p) be a good resolution of ϕ\phi with exceptional divisor EY=π1(p)E_{Y}=\pi ^{-1}(p). We denote G(Y)G(Y) the dual graph of the resolution π\pi . We study the behaviour of the Hironaka quotients of (f,g)(f,g) associated to the vertices of G(Y)G(Y). We show that there exists maximal oriented arcs in G(Y)G(Y) along which the Hironaka quotients of (f,g)(f,g) strictly increase and they are constant on the connected components of the closure of the complement of the union of the maximal oriented arcs

    An elementary chromatic reduction for gain graphs and special hyperplane arrangements

    Full text link
    A gain graph is a graph whose edges are labelled invertibly by "gains" from a group. "Switching" is a transformation of gain graphs that generalizes conjugation in a group. A "weak chromatic function" of gain graphs with gains in a fixed group satisfies three laws: deletion-contraction for links with neutral gain, invariance under switching, and nullity on graphs with a neutral loop. The laws lead to the "weak chromatic group" of gain graphs, which is the universal domain for weak chromatic functions. We find expressions, valid in that group, for a gain graph in terms of minors without neutral-gain edges, or with added complete neutral-gain subgraphs, that generalize the expression of an ordinary chromatic polynomial in terms of monomials or falling factorials. These expressions imply relations for chromatic functions of gain graphs. We apply our relations to some special integral gain graphs including those that correspond to the Shi, Linial, and Catalan arrangements, thereby obtaining new evaluations of and new ways to calculate the zero-free chromatic polynomial and the integral and modular chromatic functions of these gain graphs, hence the characteristic polynomials and hypercubical lattice-point counting functions of the arrangements. We also calculate the total chromatic polynomial of any gain graph and especially of the Catalan, Shi, and Linial gain graphs.Comment: 31 page

    Totally frustrated states in the chromatic theory of gain graphs

    Get PDF
    We generalize proper coloring of gain graphs to totally frustrated states, where each vertex takes a value in a set of `qualities' or `spins' that is permuted by the gain group. (An example is the Potts model.) The number of totally frustrated states satisfies the usual deletion-contraction law but is matroidal only for standard coloring, where the group action is trivial or nearly regular. One can generalize chromatic polynomials by constructing spin sets with repeated transitive components.Comment: 14 pages, 2 figure

    Canonical Proof nets for Classical Logic

    Full text link
    Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that (a) there should be a canonical function from sequent proofs to proof nets, (b) it should be possible to check the correctness of a net in polynomial time, (c) every correct net should be obtainable from a sequent calculus proof, and (d) there should be a cut-elimination procedure which preserves correctness. Previous attempts to give proof-net-like objects for propositional classical logic have failed at least one of the above conditions. In [23], the author presented a calculus of proof nets (expansion nets) satisfying (a) and (b); the paper defined a sequent calculus corresponding to expansion nets but gave no explicit demonstration of (c). That sequent calculus, called LK\ast in this paper, is a novel one-sided sequent calculus with both additively and multiplicatively formulated disjunction rules. In this paper (a self-contained extended version of [23]), we give a full proof of (c) for expansion nets with respect to LK\ast, and in addition give a cut-elimination procedure internal to expansion nets - this makes expansion nets the first notion of proof-net for classical logic satisfying all four criteria.Comment: Accepted for publication in APAL (Special issue, Classical Logic and Computation
    corecore