1,361 research outputs found

    The structure of Renyi entropic inequalities

    Full text link
    We investigate the universal inequalities relating the alpha-Renyi entropies of the marginals of a multi-partite quantum state. This is in analogy to the same question for the Shannon and von Neumann entropy (alpha=1) which are known to satisfy several non-trivial inequalities such as strong subadditivity. Somewhat surprisingly, we find for 0<alpha<1, that the only inequality is non-negativity: In other words, any collection of non-negative numbers assigned to the nonempty subsets of n parties can be arbitrarily well approximated by the alpha-entropies of the 2^n-1 marginals of a quantum state. For alpha>1 we show analogously that there are no non-trivial homogeneous (in particular no linear) inequalities. On the other hand, it is known that there are further, non-linear and indeed non-homogeneous, inequalities delimiting the alpha-entropies of a general quantum state. Finally, we also treat the case of Renyi entropies restricted to classical states (i.e. probability distributions), which in addition to non-negativity are also subject to monotonicity. For alpha different from 0 and 1 we show that this is the only other homogeneous relation.Comment: 15 pages. v2: minor technical changes in Theorems 10 and 1

    Information geometric methods for complexity

    Full text link
    Research on the use of information geometry (IG) in modern physics has witnessed significant advances recently. In this review article, we report on the utilization of IG methods to define measures of complexity in both classical and, whenever available, quantum physical settings. A paradigmatic example of a dramatic change in complexity is given by phase transitions (PTs). Hence we review both global and local aspects of PTs described in terms of the scalar curvature of the parameter manifold and the components of the metric tensor, respectively. We also report on the behavior of geodesic paths on the parameter manifold used to gain insight into the dynamics of PTs. Going further, we survey measures of complexity arising in the geometric framework. In particular, we quantify complexity of networks in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. We are also concerned with complexity measures that account for the interactions of a given number of parts of a system that cannot be described in terms of a smaller number of parts of the system. Finally, we investigate complexity measures of entropic motion on curved statistical manifolds that arise from a probabilistic description of physical systems in the presence of limited information. The Kullback-Leibler divergence, the distance to an exponential family and volumes of curved parameter manifolds, are examples of essential IG notions exploited in our discussion of complexity. We conclude by discussing strengths, limits, and possible future applications of IG methods to the physics of complexity.Comment: review article, 60 pages, no figure

    Remarks on entanglement entropy for gauge fields

    Get PDF
    In gauge theories the presence of constraints can obstruct expressing the global Hilbert space as a tensor product of the Hilbert spaces corresponding to degrees of freedom localized in complementary regions. In algebraic terms, this is due to the presence of a center --- a set of operators which commute with all others --- in the gauge invariant operator algebra corresponding to finite region. A unique entropy can be assigned to algebras with center, giving place to a local entropy in lattice gauge theories. However, ambiguities arise on the correspondence between algebras and regions. In particular, it is always possible to choose (in many different ways) local algebras with trivial center, and hence a genuine entanglement entropy, for any region. These choices are in correspondence with maximal trees of links on the boundary, which can be interpreted as partial gauge fixings. This interpretation entails a gauge fixing dependence of the entanglement entropy. In the continuum limit however, ambiguities in the entropy are given by terms local on the boundary of the region, in such a way relative entropy and mutual information are finite, universal, and gauge independent quantities.Comment: 26 pages, 7 figure

    A survey of uncertainty principles and some signal processing applications

    Full text link
    The goal of this paper is to review the main trends in the domain of uncertainty principles and localization, emphasize their mutual connections and investigate practical consequences. The discussion is strongly oriented towards, and motivated by signal processing problems, from which significant advances have been made recently. Relations with sparse approximation and coding problems are emphasized
    • …
    corecore