181 research outputs found

    On a Connectivity Threshold for Colorings of Random Graphs and Hypergraphs

    Get PDF
    Let Omega_q=Omega_q(H) denote the set of proper [q]-colorings of the hypergraph H. Let Gamma_q be the graph with vertex set Omega_q where two vertices are adjacent iff the corresponding colorings differ in exactly one vertex. We show that if H=H_{n,m;k}, k >= 2, the random k-uniform hypergraph with V=[n] and m=dn/k hyperedges then w.h.p. Gamma_q is connected if d is sufficiently large and q >~ (d/log d)^{1/(k-1)}. This is optimal to the first order in d. Furthermore, with a few more colors, we find that the diameter of Gamma_q is O(n) w.h.p, where the hidden constant depends on d. So, with this choice of d,q, the natural Glauber Dynamics Markov Chain on Omega_q is ergodic w.h.p

    A sharp threshold for random graphs with a monochromatic triangle in every edge coloring

    Full text link
    Let R\R be the set of all finite graphs GG with the Ramsey property that every coloring of the edges of GG by two colors yields a monochromatic triangle. In this paper we establish a sharp threshold for random graphs with this property. Let G(n,p)G(n,p) be the random graph on nn vertices with edge probability pp. We prove that there exists a function c^=c^(n)\hat c=\hat c(n) with 000 0, as nn tends to infinity Pr[G(n,(1-\eps)\hat c/\sqrt{n}) \in \R ] \to 0 and Pr [ G(n,(1+\eps)\hat c/\sqrt{n}) \in \R ] \to 1. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemer\'edi's Regularity Lemma to a certain hypergraph setting.Comment: 101 pages, Final version - to appear in Memoirs of the A.M.

    Bicoloring Random Hypergraphs

    Full text link
    We study the problem of bicoloring random hypergraphs, both numerically and analytically. We apply the zero-temperature cavity method to find analytical results for the phase transitions (dynamic and static) in the 1RSB approximation. These points appear to be in agreement with the results of the numerical algorithm. In the second part, we implement and test the Survey Propagation algorithm for specific bicoloring instances in the so called HARD-SAT phase.Comment: 14 pages, 10 figure

    On the freezing of variables in random constraint satisfaction problems

    Full text link
    The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.Comment: 32 pages, 7 figure

    Conflict-free coloring of graphs

    Full text link
    We study the conflict-free chromatic number chi_{CF} of graphs from extremal and probabilistic point of view. We resolve a question of Pach and Tardos about the maximum conflict-free chromatic number an n-vertex graph can have. Our construction is randomized. In relation to this we study the evolution of the conflict-free chromatic number of the Erd\H{o}s-R\'enyi random graph G(n,p) and give the asymptotics for p=omega(1/n). We also show that for p \geq 1/2 the conflict-free chromatic number differs from the domination number by at most 3.Comment: 12 page

    Combinatorics, Probability and Computing

    Get PDF
    One of the exciting phenomena in mathematics in recent years has been the widespread and surprisingly effective use of probabilistic methods in diverse areas. The probabilistic point of view has turned out to b

    A hierarchy of randomness for graphs

    Get PDF
    AbstractIn this paper we formulate four families of problems with which we aim at distinguishing different levels of randomness.The first one is completely non-random, being the ordinary Ramsey–Turán problem and in the subsequent three problems we formulate some randomized variations of it. As we will show, these four levels form a hierarchy. In a continuation of this paper we shall prove some further theorems and discuss some further, related problems
    • …
    corecore