16 research outputs found

    A Full Computation-relevant Topological Dynamics Classification of Elementary Cellular Automata

    Full text link
    Cellular automata are both computational and dynamical systems. We give a complete classification of the dynamic behaviour of elementary cellular automata (ECA) in terms of fundamental dynamic system notions such as sensitivity and chaoticity. The "complex" ECA emerge to be sensitive, but not chaotic and not eventually weakly periodic. Based on this classification, we conjecture that elementary cellular automata capable of carrying out complex computations, such as needed for Turing-universality, are at the "edge of chaos"

    Decidability and Universality in Symbolic Dynamical Systems

    Full text link
    Many different definitions of computational universality for various types of dynamical systems have flourished since Turing's work. We propose a general definition of universality that applies to arbitrary discrete time symbolic dynamical systems. Universality of a system is defined as undecidability of a model-checking problem. For Turing machines, counter machines and tag systems, our definition coincides with the classical one. It yields, however, a new definition for cellular automata and subshifts. Our definition is robust with respect to initial condition, which is a desirable feature for physical realizability. We derive necessary conditions for undecidability and universality. For instance, a universal system must have a sensitive point and a proper subsystem. We conjecture that universal systems have infinite number of subsystems. We also discuss the thesis according to which computation should occur at the `edge of chaos' and we exhibit a universal chaotic system.Comment: 23 pages; a shorter version is submitted to conference MCU 2004 v2: minor orthographic changes v3: section 5.2 (collatz functions) mathematically improved v4: orthographic corrections, one reference added v5:27 pages. Important modifications. The formalism is strengthened: temporal logic replaced by finite automata. New results. Submitte

    Compression-based investigation of the dynamical properties of cellular automata and other systems

    Full text link
    A method for studying the qualitative dynamical properties of abstract computing machines based on the approximation of their program-size complexity using a general lossless compression algorithm is presented. It is shown that the compression-based approach classifies cellular automata (CA) into clusters according to their heuristic behavior, with these clusters showing a correspondence with Wolfram's main classes of CA behavior. A compression based method to estimate a characteristic exponent to detect phase transitions and measure the resiliency or sensitivity of a system to its initial conditions is also proposed. A conjecture regarding the capability of a system to reach computational universality related to the values of this phase transition coefficient is formulated. These ideas constitute a compression-based framework for investigating the dynamical properties of cellular automata and other systems.Comment: 28 pages. This version includes the conjecture relating the transition coefficient to computational universality. Camera ready versio

    Computability and Beltrami fields in Euclidean space

    Get PDF
    In this article, we pursue our investigation of the connections between the theory of computation and hydrodynamics. We prove the existence of stationary solutions of the Euler equations in Euclidean space, of Beltrami type, that can simulate a universal Turing machine. In particular, these solutions possess undecidable trajectories. Heretofore, the known Turing complete constructions of steady Euler flows in dimension 3 or higher were not associated to a prescribed metric. Our solutions do not have finite energy, and their construction makes crucial use of the non-compactness of R3, however they can be employed to show that an arbitrary tape-bounded Turing machine can be robustly simulated by a Beltrami flow on T3 (with the standard flat metric). This shows that there exist steady solutions to the Euler equations on the flat torus exhibiting dynamical phenomena of (robust) arbitrarily high computational complexity. We also quantify the energetic cost for a Beltrami field on T3 to simulate a tape-bounded Turing machine, thus providing additional support for the space-bounded Church-Turing thesis. Another implication of our construction is that a Gaussian random Beltrami field on Euclidean space exhibits arbitrarily high computational complexity with probability 1. Finally, our proof also yields Turing complete flows and maps on S2 with zero topological entropy, thus disclosing a certain degree of independence within different hierarchies of complexity.Robert Cardona acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the Mar´ıa de Maeztu Programme for Units of Excellence in R& D (MDM-2014-0445) via an FPI grant. Robert Cardona and Eva Miranda are partially supported by the AEI grant PID2019- 103849GB-I00 of MCIN/ AEI /10.13039/501100011033, and AGAUR grant 2017SGR932. Eva Miranda is supported by the Catalan Institution for Research and Advanced Studies via an ICREA Academia Prize 2016 and by the Spanish State Research Agency, through the Severo Ochoa and Mar´ıa de Maeztu Program for Centers and Units of Excellence in R&D (project CEX2020-001084-M). Daniel Peralta-Salas is supported by the grants CEX2019-000904-S, RED2018- 102650-T, EUR2019-103821 and PID2019-106715GB GB-C21 funded by MCIN/AEI/ 10.13039/501100011033.Preprin

    Computability and Beltrami fields in Euclidean space

    Get PDF
    In this article, we pursue our investigation of the connections between the theory of computation and hydrodynamics. We prove the existence of stationary solutions of the Euler equations in Euclidean space, of Beltrami type, that can simulate a universal Turing machine. In particular, these solutions possess undecidable trajectories. Heretofore, the known Turing complete constructions of steady Euler flows in dimension 3 or higher were not associated to a prescribed metric. Our solutions do not have finite energy, and their construction makes crucial use of the non-compactness of R³ , however they can be employed to show that an arbitrary tape-bounded Turing machine can be robustly simulated by a Beltrami flow on T³ (with the standard flat metric). This shows that there exist steady solutions to the Euler equations on the flat torus exhibiting dynamical phenomena of (robust) computational complexity as high as desired. We also quantify the energetic cost for a Beltrami field on T³ to simulate a tape-bounded Turing machine, thus providing additional support for the space-bounded ChurchTuring thesis. Another implication of our construction is that a Gaussian random Beltrami field on Euclidean space exhibits arbitrarily high computational complexity with probability 1. Finally, our proof also yields Turing complete flows and diffeomorphisms on S² with zero topological entropy, thus disclosing a certain degree of independence within different hierarchies of complexityPostprint (author's final draft

    Computability and Beltrami fields in Euclidean space

    Get PDF
    In this article, we pursue our investigation of the connections between the theory of computation and hydrodynamics. We prove the existence of stationary solutions of the Euler equations in Euclidean space, of Beltrami type, that can simulate a universal Turing machine. In particular, these solutions possess undecidable trajectories. Heretofore, the known Turing complete constructions of steady Euler flows in dimension 3 or higher were not associated to a prescribed metric. Our solutions do not have finite energy, and their construction makes crucial use of the non-compactness of R3\mathbb R^3, however they can be employed to show that an arbitrary tape-bounded Turing machine can be robustly simulated by a Beltrami flow on T3\mathbb T^3 (with the standard flat metric). This shows that there exist steady solutions to the Euler equations on the flat torus exhibiting dynamical phenomena of (robust) computational complexity as high as desired. We also quantify the energetic cost for a Beltrami field on T3\mathbb T^3 to simulate a tape-bounded Turing machine, thus providing additional support for the space-bounded Church-Turing thesis. Another implication of our construction is that a Gaussian random Beltrami field on Euclidean space exhibits arbitrarily high computational complexity with probability 11. Finally, our proof also yields Turing complete flows and diffeomorphisms on S2\mathbb{S}^2 with zero topological entropy, thus disclosing a certain degree of independence within different hierarchies of complexity.Comment: overall improvement of the article, proofs revised, 37 pages, 3 figures, final version to appear at J. Math. Pures App

    Programmation et indécidabilités dans les systèmes complexes

    No full text
    N/AUn système complexe est un système constitué d'un ensemble d'entités quiinteragissent localement, engendrant des comportements globaux, émergeant dusystème, qu'on ne sait pas expliquer à partir du comportement local, connu, desentités qui le constituent. Nos travaux ont pour objet de mieux cerner lesliens entre certaines propriétés des systèmes complexes et le calcul. Parcalcul, il faut entendre l'objet d'étude de l'informatique, c'est-à-dire ledéplacement et la combinaison d'informations. À l'aide d'outils issus del'informatique, l'algorithmique et la programmation dans les systèmes complexessont abordées selon trois points de vue. Une première forme de programmation,dite externe, consiste à développer l'algorithmique qui permet de simuler lessystèmes étudiés. Une seconde forme de programmation, dite interne, consiste àdévelopper l'algorithmique propre à ces systèmes, qui permet de construire desreprésentants de ces systèmes qui exhibent des comportements programmés. Enfin,une troisième forme de programmation, de réduction, consiste à plonger despropriétés calculatoires complexes dans les représentants de ces systèmes pourétablir des résultats d'indécidabilité -- indice d'une grande complexitécalculatoire qui participe à l'explication de la complexité émergente. Afin demener à bien cette étude, les systèmes complexes sont modélisés par desautomates cellulaires. Le modèle des automates cellulaires offre une dualitépertinente pour établir des liens entre complexité des propriétés globales etcalcul. En effet, un automate cellulaire peut être décrit à la fois comme unréseau d'automates, offrant un point de vue familier de l'informatique, etcomme un système dynamique discret, une fonction définie sur un espacetopologique, offrant un point de vue familier de l'étude des systèmesdynamiques discrets.Une première partie de nos travaux concerne l'étude de l'objet automatecellulaire proprement dit. L'observation expérimentale des automatescellulaires distingue, dans la littérature, deux formes de dynamiques complexesdominantes. Certains automates cellulaires présentent une dynamique danslaquelle émergent des structures simples, sortes de particules qui évoluentdans un domaine régulier, se rencontrent lors de brèves collisions, avant degénérer d'autres particules. Cette forme de complexité, dans laquelletransparaît une notion de quanta d'information localisée en interaction, estl'objet de nos études. Un premier champ de nos investigations est d'établir uneclassification algébrique, le groupage, qui tend à rendre compte de ce type decomportement. Cette classification met à jour un type d'automate cellulaireparticulier : les automates cellulaires intrinsèquement universels. Un automatecellulaire intrinsèquement universel est capable de simuler le comportement detout automate cellulaire. C'est l'objet de notre second champ d'investigation.Nous caractérisons cette propriété et démontrons son indécidabilité. Enfin, untroisième champ d'investigation concerne l'algorithmique des automatescellulaires à particules et collisions. Étant donné un ensemble de particuleset de collisions d'un tel automate cellulaire, nous étudions l'ensemble desinteractions possibles et proposons des outils pour une meilleure programmationinterne à l'aide de ces collisions.Une seconde partie de nos travaux concerne la programmation par réduction. Afinde démontrer l'indécidabilité de propriétés dynamiques des automatescellulaires, nous étudions d'une part les problèmes de pavage du plan par desjeux de tuiles finis et d'autre part les problèmes de mortalité et depériodicité dans les systèmes dynamiques discrets à fonction partielle. Cetteétude nous amène à considérer des objets qui possèdent la même dualité entredescription combinatoire et topologique que les automates cellulaires. Unenotion d'apériodicité joue un rôle central dans l'indécidabilité des propriétésde ces objets

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first
    corecore