29 research outputs found

    A Creative Review on Coprime (Prime) Graphs

    Get PDF
    Coprime labelings and Coprime graphs have been of interest since 1980s and got popularized by the Entringer-Tout Tree Conjecture. Around the same time Newman's coprime mapping conjecture was settled by Pomerance and Selfridge. This result was further extended to integers in arithmetic progression. Since then coprime graphs were studied for various combinatorial properties. Here, coprimality of graphs for classes of graphs under the themes: Bipartite with special attention to Acyclicity, Eulerian and Regularity. Extremal graphs under non-coprimality and Eulerian properties are studied. Embeddings of coprime graphs in the general graphs, the maximum coprime graph and the Eulerian coprime graphs are studied as subgraphs and induced subgraphs. The purpose of this review is to assimilate the available works on coprime graphs. The results in the context of these themes are reviewed including embeddings and extremal problems

    Orders and partitions of integers induced by arithmetic functions

    Full text link
    We pursue the question how integers can be ordered or partitioned according to their divisibility properties. Based on pseudometrics on Z\mathbb{Z}, we investigate induced preorders, associated equivalence relations, and quotient sets. The focus is on metrics or pseudometrics on Dn\mathbb{D}_n, the set of divisors of a given modulus n∈Nn\in\mathbb{N}, that can be extended to pseudometrics on Z\mathbb{Z}. Arithmetic functions can be used to generate such pseudometrics. We discuss several subsets of additive and multiplicative arithmetic functions and various combinations of their function values leading to binary metric functions that represent different divisibility properties of integers. We conclude this paper with numerous examples and review the most important results. As an additional result, we derive a necessary condition for the truth of the odd k-perfect number conjecture.Comment: 50 pages, 3 diagram

    Small gaps in the spectrum of the rectangular billiard

    Get PDF
    We study the size of the minimal gap between the first N eigenvalues of the Laplacian on a rectangular billiard having irrational squared aspect ratio α, in comparison to the corresponding quantity for a Poissonian sequence. If α is a quadratic irrationality of certain type, such as the square root of a rational number, we show that the minimal gap is roughly of size 1/N, which is essentially consistent with Poisson statistics. We also give related results for a set of α's of full measure. However, on a fine scale we show that Poisson statistics is violated for all α. The proofs use a variety of ideas of an arithmetical nature, involving Diophantine approximation, the theory of continued fractions, and results in analytic number theory

    Mean values and correlations of multiplicative functions : the ``pretentious" approach

    Full text link
    Le sujet principal de cette thĂšse est l’étude des valeurs moyennes et corrĂ©lations de fonctions multiplicatives. Les rĂ©sultats portant sur ces derniers sont subsĂ©quemment appliquĂ©s Ă  la rĂ©solution de plusieurs problĂšmes. Dans le premier chapitre, on rappelle certains rĂ©sultats classiques concernant les valeurs moyennes des fonctions multiplicatives. On y Ă©nonce Ă©galement les thĂ©orĂšmes principaux de la thĂšse. Le deuxiĂšme chapitre consiste de l’article “Mean values of multiplicative functions over the function fields". En se basant sur des rĂ©sultats classiques de Wirsing, de Hall et de Tenenbaum concernant les fonctions multiplicatives arithmĂ©tiques, on Ă©nonce et on dĂ©montre des thĂ©orĂšmes qui y correspondent pour les fonctions multiplicatives sur les corps des fonctions Fq[x]. Ainsi, on rĂ©soud un problĂšme posĂ© dans un travail rĂ©cent de Granville, Harper et Soundararajan. On dĂ©crit dans notre thĂ©se certaines caractĂ©ristiques du comportement des fonctions multiplicatives sur les corps de fonctions qui ne sont pas prĂ©sentes dans le contexte des corps de nombres. Entre autres, on introduit pour la premiĂšre fois une notion de “simulation” pour les fonctions multiplicatives sur les corps de fonctions Fq[x]. Les chapitres 3 et 4 comprennent plusieurs rĂ©sultats de l’article “Correlations of multiplicative functions and applications". Dans cet article, on dĂ©termine une formule asymptotique pour les corrĂ©lations X n6x f1(P1(n)) · · · fm(Pm(n)), oĂč f1, . . . ,fm sont des fonctions multiplicatives de module au plus ou Ă©gal Ă  1 ”simulatrices” qui satisfont certaines hypothĂšses naturelles, et P1, . . . ,Pm sont des polynomes ayant des coefficients positifs. On dĂ©duit de cette formule plusieurs consĂ©quences intĂ©ressantes. D’abord, on donne une classification des fonctions multiplicatives f : N ! {−1,+1} ayant des sommes partielles uniformĂ©ment bornĂ©es. Ainsi, on rĂ©soud un problĂšme d’Erdos datant de 1957 (dans la forme conjecturĂ©e par Tao). Ensuite, on dĂ©montre que si la valeur moyenne des Ă©carts |f(n + 1) − f(n)| est zĂ©ro, alors soit |f| a une valeur moyenne de zĂ©ro, soit f(n) = ns avec iii Re(s) < 1. Ce rĂ©sultat affirme une ancienne conjecture de KĂĄtai. Enfin, notre thĂ©orĂšme principal est utilisĂ© pour compter le nombre de reprĂ©sentations d’un entier n en tant que somme a+b, oĂč a et b proviennent de sous-ensembles multiplicatifs fixĂ©s de N. Notre dĂ©monstration de ce rĂ©sultat, dĂ» Ă  l’origine Ă  BrĂŒdern, Ă©vite l’usage de la “mĂ©thode du cercle". Les chapitres 5 et 6 sont basĂ©s sur les rĂ©sultats obtenus dans l’article “Effective asymptotic formulae for multilinear averages and sign patterns of multiplicative functions," un travail conjoint avec Alexander Mangerel. D’aprĂšs une mĂ©thode analytique dans l’esprit du thĂ©orĂšme des valeurs moyennes de HalĂĄsz, on dĂ©termine une formule asymptotique pour les moyennes multidimensionelles x−l X n2[x]l Y 16j6k fj(Lj(n)), lorsque x ! 1, oĂč [x] := [1,x] et L1, . . . ,Lk sont des applications linĂ©aires affines qui satisfont certaines hypothĂšses naturelles. Notre mĂ©thode rend ainsi une dĂ©monstration neuve d’un rĂ©sultat de Frantzikinakis et Host avec, Ă©galement, un terme principal explicite et un terme d’erreur quantitatif. On applique nos formules Ă  la dĂ©monstration d’un phĂ©nomĂšne local-global pour les normes de Gowers des fonctions multiplicatives. De plus, on dĂ©couvre et explique certaines irrĂ©gularitĂ©s dans la distribution des suites de signes de fonctions multiplicatives f : N ! {−1,+1}. Visant de tels rĂ©sultats, on dĂ©termine les densitĂ©s asymptotiques des ensembles d’entiers n tels que la fonction f rend une suite fixĂ©e de 3 ou 4 signes dans presque toutes les progressions arithmĂ©tiques de 3 ou 4 termes, respectivement, ayant n comme premier terme. Ceci mĂšne Ă  une gĂ©nĂ©ralisation et amĂ©lioration du travail de Buttkewitz et Elsholtz, et donne un complĂ©ment Ă  un travail rĂ©cent de MatomĂ€ki, RadziwiƂƂ et Tao sur les suites de signes de la fonction de Liouville.The main theme of this thesis is to study mean values and correlations of multiplicative functions and apply the corresponding results to tackle some open problems. The first chapter contains discussion of several classical facts about mean values of multiplicative functions and statement of the main results of the thesis. The second chapter consists of the article “Mean values of multiplicative functions over the function fields". The main purpose of this chapter is to formulate and prove analog of several classical results due to Wirsing, Hall and Tenenbaum over the function field Fq[x], thus answering questions raised in the recent work of Granville, Harper and Soundararajan. We explain some features of the behaviour of multiplicative functions that are not present in the number field settings. This is accomplished by, among other things, introducing the notion of “pretentiousness" over the function fields. Chapter 3 and Chapter 4 include results of the article “Correlations of multiplicative functions and applications". Here, we give an asymptotic formula for correlations X n_x f1(P1(n))f2(P2(n)) · · · · · fm(Pm(n)) where f . . . ,fm are bounded “pretentious" multiplicative functions, under certain natural hypotheses. We then deduce several desirable consequences. First, we characterize all multiplicative functions f : N ! {−1,+1} with bounded partial sums. This answers a question of Erdos from 1957 in the form conjectured by Tao. Second, we show that if the average of the first divided difference of multiplicative function is zero, then either f(n) = ns for Re(s) < 1 or |f(n)| is small on average. This settles an old conjecture of KĂĄtai. Third, we apply our theorem to count the number of representations of n = a + b where a,b belong to some multiplicative subsets of N. This gives a new "circle method-free" proof of the result of BrĂŒdern. Chapters 5 and Chapter 6 are based on the results obtained in the article “Effective asymptotic formulae for multilinear averages and sign patterns of multiplicative functions," joint with Alexander Mangerel. Using an analytic approach in the spirit of HalĂĄsz’ mean v value theorem, we compute multidimensional averages x−l X n2[x]l Y 16j6k fj(Lj(n)) as x ! 1, where [x] := [1,x] and L1, . . . ,Lk are affine linear forms that satisfy some natural conditions. Our approach gives a new proof of a result of Frantzikinakis and Host that is distinct from theirs, with explicit main and error terms. As an application of our formulae, we establish a local-to-global principle for Gowers norms of multiplicative functions. We reveal and explain irregularities in the distribution of the sign patterns of multiplicative functions by computing the asymptotic densities of the sets of integers n such that a given multiplicative function f : N ! {−1, 1} yields a fixed sign pattern of length 3 or 4 on almost all 3- and 4-term arithmetic progressions, respectively, with first term n. The latter generalizes and refines the work of Buttkewitz and Elsholtz and complements the recent work of Matomaki, RadziwiƂƂ and Tao. We conclude this thesis by discussing some work in progress

    A Generalised abc Conjecture and Quantitative Diophantine Approximation

    Get PDF
    The abc Conjecture and its number field variant have huge implications across a wide range of mathematics. While the conjecture is still unproven, there are a number of partial results, both for the integer and the number field setting. Notably, Stewart and Yu have exponential abc bounds for integers, using tools from linear forms in logarithms, while GyƑry has exponential abc bounds in the number field case, using methods from S-unit equations [20]. In this thesis, we aim to combine these methods to give improved results in the number field case. These results are then applied to the effective Skolem-Mahler-Lech problem, and to the smooth abc conjecture. The smooth abc conjecture concerns counting the number of solutions to a+b = c with restrictions on the values of a, b and c. this leads us to more general methods of counting solutions to Diophantine problems. Many of these results are asymptotic in nature due to use of tools such as Lemmas 1.4 and 1.5 of Harman's "Metric Number Theory". We make these lemmas effective rather than asymptotic other than on a set of size ή > 0, where ή is arbitrary. From there, we apply these tools to give an effective Schmidt’s Theorem, a quantitative Koukoulopoulos-Maynard Theorem (also referred to as the Duffin- Schaeffer Theorem), and to give effective results on inhomogeneous Diophantine Approximation on M0-sets, normal numbers and give an effective Strong Law of Large Numbers. We conclude this thesis by giving general versions of Lemmas 1.4 and 1.5 of Harman's "Metric Number Theory"

    Small gaps in the spectrum of the rectangular billiard

    Get PDF
    We study the size of the minimal gap between the first N eigenvalues of the Laplacian on a rectangular billiard having irrational squared aspect ratio α, in comparison to the corresponding quantity for a Poissonian sequence. If α is a quadratic irrationality of certain type, such as the square root of a rational number, we show that the minimal gap is roughly of size 1/N, which is essentially consistent with Poisson statistics. We also give related results for a set of α's of full measure. However, on a fine scale we show that Poisson statistics is violated for all α. The proofs use a variety of ideas of an arithmetical nature, involving Diophantine approximation, the theory of continued fractions, and results in analytic number theory

    A Pythagorean Introduction to Number Theory : Right Triangles, Sums of Squares, and Arithmetic

    Get PDF
    In the ?rst section of this opening chapter we review two different proofs of the PythagoreanTheorem,oneduetoEuclidandtheotheroneduetoaformerpresident oftheUnitedStates,JamesGar?eld.Inthesamesectionwealsoreviewsomehigher dimensional analogues of the Pythagorean Theorem. Later in the chapter we de?ne Pythagorean triples; explain what it means for a Pythagorean triple to be primitive; and clarify the relationship between Pythagorean triples and points with rational coordinates on the unit circle. At the end we list the problems that we will be interested in studying in the book. In the notes at the end of the chapter we talk about Pythagoreans and their, sometimes strange, beliefs. We will also brie?y review the history of Pythagorean triples
    corecore