34,174 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Statistical Traffic State Analysis in Large-scale Transportation Networks Using Locality-Preserving Non-negative Matrix Factorization

    Get PDF
    Statistical traffic data analysis is a hot topic in traffic management and control. In this field, current research progresses focus on analyzing traffic flows of individual links or local regions in a transportation network. Less attention are paid to the global view of traffic states over the entire network, which is important for modeling large-scale traffic scenes. Our aim is precisely to propose a new methodology for extracting spatio-temporal traffic patterns, ultimately for modeling large-scale traffic dynamics, and long-term traffic forecasting. We attack this issue by utilizing Locality-Preserving Non-negative Matrix Factorization (LPNMF) to derive low-dimensional representation of network-level traffic states. Clustering is performed on the compact LPNMF projections to unveil typical spatial patterns and temporal dynamics of network-level traffic states. We have tested the proposed method on simulated traffic data generated for a large-scale road network, and reported experimental results validate the ability of our approach for extracting meaningful large-scale space-time traffic patterns. Furthermore, the derived clustering results provide an intuitive understanding of spatial-temporal characteristics of traffic flows in the large-scale network, and a basis for potential long-term forecasting.Comment: IET Intelligent Transport Systems (2013

    Delineating Intra-Urban Spatial Connectivity Patterns by Travel-Activities: A Case Study of Beijing, China

    Full text link
    Travel activities have been widely applied to quantify spatial interactions between places, regions and nations. In this paper, we model the spatial connectivities between 652 Traffic Analysis Zones (TAZs) in Beijing by a taxi OD dataset. First, we unveil the gravitational structure of intra-urban spatial connectivities of Beijing. On overall, the inter-TAZ interactions are well governed by the Gravity Model Gij=λpipj/dijG_{ij} = {\lambda}p_{i}p_{j}/d_{ij}, where pip_{i}, pjp_{j} are degrees of TAZ ii, jj and dijd_{ij} the distance between them, with a goodness-of-fit around 0.8. Second, the network based analysis well reveals the polycentric form of Beijing. Last, we detect the semantics of inter-TAZ connectivities based on their spatiotemporal patterns. We further find that inter-TAZ connections deviating from the Gravity Model can be well explained by link semantics.Comment: 6 pages, 4 figure

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work

    Energy Efficiency in Cache Enabled Small Cell Networks With Adaptive User Clustering

    Full text link
    Using a network of cache enabled small cells, traffic during peak hours can be reduced considerably through proactively fetching the content that is most probable to be requested. In this paper, we aim at exploring the impact of proactive caching on an important metric for future generation networks, namely, energy efficiency (EE). We argue that, exploiting the correlation in user content popularity profiles in addition to the spatial repartitions of users with comparable request patterns, can result in considerably improving the achievable energy efficiency of the network. In this paper, the problem of optimizing EE is decoupled into two related subproblems. The first one addresses the issue of content popularity modeling. While most existing works assume similar popularity profiles for all users in the network, we consider an alternative caching framework in which, users are clustered according to their content popularity profiles. In order to showcase the utility of the proposed clustering scheme, we use a statistical model selection criterion, namely Akaike information criterion (AIC). Using stochastic geometry, we derive a closed-form expression of the achievable EE and we find the optimal active small cell density vector that maximizes it. The second subproblem investigates the impact of exploiting the spatial repartitions of users with comparable request patterns. After considering a snapshot of the network, we formulate a combinatorial optimization problem that enables to optimize content placement such that the used transmission power is minimized. Numerical results show that the clustering scheme enable to considerably improve the cache hit probability and consequently the EE compared with an unclustered approach. Simulations also show that the small base station allocation algorithm results in improving the energy efficiency and hit probability.Comment: 30 pages, 5 figures, submitted to Transactions on Wireless Communications (15-Dec-2016
    • …
    corecore