252 research outputs found

    On the evaluation of a certain class of Feynman diagrams in x-space: Sunrise-type topologies at any loop order

    Full text link
    We review recently developed new powerful techniques to compute a class of Feynman diagrams at any loop order, known as sunrise-type diagrams. These sunrise-type topologies have many important applications in many different fields of physics and we believe it to be timely to discuss their evaluation from a unified point of view. The method is based on the analysis of the diagrams directly in configuration space which, in the case of the sunrise-type diagrams and diagrams related to them, leads to enormous simplifications as compared to the traditional evaluation of loops in momentum space. We present explicit formulae for their analytical evaluation for arbitrary mass configurations and arbitrary dimensions at any loop order. We discuss several limiting cases of their kinematical regimes which are e.g. relevant for applications in HQET and NRQCD.Comment: 100 pages, 16 eps-figures include

    The fractional orthogonal derivative

    Full text link
    This paper builds on the notion of the so-called orthogonal derivative, where an n-th order derivative is approximated by an integral involving an orthogonal polynomial of degree n. This notion was reviewed in great detail in a paper in J. Approx. Theory (2012) by the author and Koornwinder. Here an approximation of the Weyl or Riemann-Liouville fractional derivative is considered by replacing the n-th derivative by its approximation in the formula for the fractional derivative. In the case of, for instance, Jacobi polynomials an explicit formula for the kernel of this approximate fractional derivative can be given. Next we consider the fractional derivative as a filter and compute the transfer function in the continuous case for the Jacobi polynomials and in the discrete case for the Hahn polynomials. The transfer function in the Jacobi case is a confluent hypergeometric function. A different approach is discussed which starts with this explicit transfer function and then obtains the approximate fractional derivative by taking the inverse Fourier transform. The theory is finally illustrated with an application of a fractional differentiating filter. In particular, graphs are presented of the absolute value of the modulus of the transfer function. These make clear that for a good insight in the behavior of a fractional differentiating filter one has to look for the modulus of its transfer function in a log-log plot, rather than for plots in the time domain.Comment: 32 pages, 7 figures. The section between formula (4.15) and (4.20) is correcte

    A probabilistic interpretation of a sequence related to Narayana polynomials

    Full text link
    A sequence of coefficients appearing in a recurrence for the Narayana polynomials is generalized. The coefficients are given a probabilistic interpretation in terms of beta distributed random variables. The recurrence established by M. Lasalle is then obtained from a classical convolution identity. Some arithmetical properties of the generalized coefficients are also established

    Comment on ‘Analytical results for a Bessel function times Legendre polynomials class integrals’

    Get PDF
    A result is obtained, stemming from Gegenbauer, where the products of certain Bessel functions and exponentials are expressed in terms of an infinite series of spherical Bessel functions and products of associated Legendre functions. Closed form solutions for integrals involving Bessel functions times associated Legendre functions times exponentials, recently elucidated by Neves et al(J. Phys. A: Math. Gen. 39 L293), are then shown to result directly from the orthogonality properties of the associated Legendre functions. This result offers greater flexibility in the treatment of classical Heisenberg chains and may do so in other problems such as occur in electromagnetic diffraction theory

    Skew-orthogonal polynomials in the complex plane and their Bergman-like kernels

    Full text link
    Non-Hermitian random matrices with symplectic symmetry provide examples for Pfaffian point processes in the complex plane. These point processes are characterised by a matrix valued kernel of skew-orthogonal polynomials. We develop their theory in providing an explicit construction of skew-orthogonal polynomials in terms of orthogonal polynomials that satisfy a three-term recurrence relation, for general weight functions in the complex plane. New examples for symplectic ensembles are provided, based on recent developments in orthogonal polynomials on planar domains or curves in the complex plane. Furthermore, Bergman-like kernels of skew-orthogonal Hermite and Laguerre polynomials are derived, from which the conjectured universality of the elliptic symplectic Ginibre ensemble and its chiral partner follow in the limit of strong non-Hermiticity at the origin. A Christoffel perturbation of skew-orthogonal polynomials as it appears in applications to quantum field theory is provided.Comment: 33 pages; v2: uniqueness of odd polynomials clarified, minor correction

    Group averaging in the (p,q) oscillator representation of SL(2,R)

    Full text link
    We investigate refined algebraic quantisation with group averaging in a finite-dimensional constrained Hamiltonian system that provides a simplified model of general relativity. The classical theory has gauge group SL(2,R) and a distinguished o(p,q) observable algebra. The gauge group of the quantum theory is the double cover of SL(2,R), and its representation on the auxiliary Hilbert space is isomorphic to the (p,q) oscillator representation. When p>1, q>1 and p+q == 0 (mod 2), we obtain a physical Hilbert space with a nontrivial representation of the o(p,q) quantum observable algebra. For p=q=1, the system provides the first example known to us where group averaging converges to an indefinite sesquilinear form.Comment: 34 pages. LaTeX with amsfonts, amsmath, amssymb. (References added; minor typos corrected.
    corecore