369,897 research outputs found

    Constraining the Number of Positive Responses in Adaptive, Non-Adaptive, and Two-Stage Group Testing

    Full text link
    Group testing is a well known search problem that consists in detecting the defective members of a set of objects O by performing tests on properly chosen subsets (pools) of the given set O. In classical group testing the goal is to find all defectives by using as few tests as possible. We consider a variant of classical group testing in which one is concerned not only with minimizing the total number of tests but aims also at reducing the number of tests involving defective elements. The rationale behind this search model is that in many practical applications the devices used for the tests are subject to deterioration due to exposure to or interaction with the defective elements. In this paper we consider adaptive, non-adaptive and two-stage group testing. For all three considered scenarios, we derive upper and lower bounds on the number of "yes" responses that must be admitted by any strategy performing at most a certain number t of tests. In particular, for the adaptive case we provide an algorithm that uses a number of "yes" responses that exceeds the given lower bound by a small constant. Interestingly, this bound can be asymptotically attained also by our two-stage algorithm, which is a phenomenon analogous to the one occurring in classical group testing. For the non-adaptive scenario we give almost matching upper and lower bounds on the number of "yes" responses. In particular, we give two constructions both achieving the same asymptotic bound. An interesting feature of one of these constructions is that it is an explicit construction. The bounds for the non-adaptive and the two-stage cases follow from the bounds on the optimal sizes of new variants of d-cover free families and (p,d)-cover free families introduced in this paper, which we believe may be of interest also in other contexts

    On the upper bound of the size of the r-cover-free families

    Get PDF
    Let T (r; n) denote the maximum number of subsets of an n-set satisfying the condition in the title. It is proved in a purely combinatorial way, that for n sufficiently large log 2 T (r; n) n 8 \Delta log 2 r r 2 holds. 1. Introduction The notion of the r-cover-free families was introduced by Kautz and Singleton in 1964 [17]. They initiated investigating binary codes with the property that the disjunction of any r (r 2) codewords are distinct (UD r codes). This led them to studying the binary codes with the property that none of the codewords is covered by the disjunction of r others (Superimposed codes, ZFD r codes; P. Erdos, P. Frankl and Z. Furedi called the correspondig set system r-cover-free in [7]). Since that many results have been proved about the maximum size of these codes. Various authors studied these problems basically from three different points of view, and these three lines of investigations were almost independent of each other. This is why many results were ..

    Some New Bounds For Cover-Free Families Through Biclique Cover

    Get PDF
    An (r,w;d)(r,w;d) cover-free family (CFF)(CFF) is a family of subsets of a finite set such that the intersection of any rr members of the family contains at least dd elements that are not in the union of any other ww members. The minimum number of elements for which there exists an (r,w;d)CFF(r,w;d)-CFF with tt blocks is denoted by N((r,w;d),t)N((r,w;d),t). In this paper, we show that the value of N((r,w;d),t)N((r,w;d),t) is equal to the dd-biclique covering number of the bipartite graph It(r,w)I_t(r,w) whose vertices are all ww- and rr-subsets of a tt-element set, where a ww-subset is adjacent to an rr-subset if their intersection is empty. Next, we introduce some new bounds for N((r,w;d),t)N((r,w;d),t). For instance, we show that for rwr\geq w and r2r\geq 2 N((r,w;1),t)c(r+ww+1)+(r+w1w+1)+3(r+w4w2)logrlog(tw+1), N((r,w;1),t) \geq c{{r+w\choose w+1}+{r+w-1 \choose w+1}+ 3 {r+w-4 \choose w-2} \over \log r} \log (t-w+1), where cc is a constant satisfies the well-known bound N((r,1;1),t)cr2logrlogtN((r,1;1),t)\geq c\frac{r^2}{\log r}\log t. Also, we determine the exact value of N((r,w;d),t)N((r,w;d),t) for some values of dd. Finally, we show that N((1,1;d),4d1)=4d1N((1,1;d),4d-1)=4d-1 whenever there exists a Hadamard matrix of order 4d
    corecore