112 research outputs found

    Improved Upper Bounds to the Causal Quadratic Rate-Distortion Function for Gaussian Stationary Sources

    Get PDF
    We improve the existing achievable rate regions for causal and for zero-delay source coding of stationary Gaussian sources under an average mean squared error (MSE) distortion measure. To begin with, we find a closed-form expression for the information-theoretic causal rate-distortion function (RDF) under such distortion measure, denoted by Rcit(D)R_{c}^{it}(D), for first-order Gauss-Markov processes. Rc^{it}(D) is a lower bound to the optimal performance theoretically attainable (OPTA) by any causal source code, namely Rc^{op}(D). We show that, for Gaussian sources, the latter can also be upper bounded as Rc^{op}(D)\leq Rc^{it}(D) + 0.5 log_{2}(2\pi e) bits/sample. In order to analyze Rcit(D)R_{c}^{it}(D) for arbitrary zero-mean Gaussian stationary sources, we introduce \bar{Rc^{it}}(D), the information-theoretic causal RDF when the reconstruction error is jointly stationary with the source. Based upon \bar{Rc^{it}}(D), we derive three closed-form upper bounds to the additive rate loss defined as \bar{Rc^{it}}(D) - R(D), where R(D) denotes Shannon's RDF. Two of these bounds are strictly smaller than 0.5 bits/sample at all rates. These bounds differ from one another in their tightness and ease of evaluation; the tighter the bound, the more involved its evaluation. We then show that, for any source spectral density and any positive distortion D\leq \sigma_{x}^{2}, \bar{Rc^{it}}(D) can be realized by an AWGN channel surrounded by a unique set of causal pre-, post-, and feedback filters. We show that finding such filters constitutes a convex optimization problem. In order to solve the latter, we propose an iterative optimization procedure that yields the optimal filters and is guaranteed to converge to \bar{Rc^{it}}(D). Finally, by establishing a connection to feedback quantization we design a causal and a zero-delay coding scheme which, for Gaussian sources, achieves...Comment: 47 pages, revised version submitted to IEEE Trans. Information Theor

    Fixed-Rate Zero-Delay Source Coding for Stationary Vector-Valued Gauss-Markov Sources

    Get PDF

    Coded Kalman Filtering Over Gaussian Channels with Feedback

    Full text link
    This paper investigates the problem of zero-delay joint source-channel coding of a vector Gauss-Markov source over a multiple-input multiple-output (MIMO) additive white Gaussian noise (AWGN) channel with feedback. In contrast to the classical problem of causal estimation using noisy observations, we examine a system where the source can be encoded before transmission. An encoder, equipped with feedback of past channel outputs, observes the source state and encodes the information in a causal manner as inputs to the channel while adhering to a power constraint. The objective of the code is to estimate the source state with minimum mean square error at the infinite horizon. This work shows a fundamental theorem for two scenarios: for the transmission of an unstable vector Gauss-Markov source over either a multiple-input single-output (MISO) or a single-input multiple-output (SIMO) AWGN channel, finite estimation error is achievable if and only if the sum of logs of the unstable eigenvalues of the state gain matrix is less than the Shannon channel capacity. We prove these results by showing an optimal linear innovations encoder that can be applied to sources and channels of any dimension and analyzing it together with the corresponding Kalman filter decoder.Comment: Presented at 59th Allerton Conference on Communication, Control, and Computin

    Bounds on the Sum-Rate of MIMO Causal Source Coding Systems with Memory under Spatio-Temporal Distortion Constraints

    Get PDF
    In this paper, we derive lower and upper bounds on the OPTA of a two-user multi-input multi-output (MIMO) causal encoding and causal decoding problem. Each user’s source model is described by a multidimensional Markov source driven by additive i.i.d. noise process subject to three classes of spatio-temporal distortion constraints. To characterize the lower bounds, we use state augmentation techniques and a data processing theorem, which recovers a variant of rate distortion function as an information measure known in the literature as nonanticipatory ϵ-entropy, sequential or nonanticipative RDF. We derive lower bound characterizations for a system driven by an i.i.d. Gaussian noise process, which we solve using the SDP algorithm for all three classes of distortion constraints. We obtain closed form solutions when the system’s noise is possibly non-Gaussian for both users and when only one of the users is described by a source model driven by a Gaussian noise process. To obtain the upper bounds, we use the best linear forward test channel realization that corresponds to the optimal test channel realization when the system is driven by a Gaussian noise process and apply a sequential causal DPCM-based scheme with a feedback loop followed by a scaled ECDQ scheme that leads to upper bounds with certain performance guarantees. Then, we use the linear forward test channel as a benchmark to obtain upper bounds on the OPTA, when the system is driven by an additive i.i.d. non-Gaussian noise process. We support our framework with various simulation studies

    Zero-Delay Multiple Descriptions of Stationary Scalar Gauss-Markov Sources

    Get PDF
    In this paper, we introduce the zero-delay multiple-description problem, where an encoder constructs two descriptions and the decoders receive a subset of these descriptions. The encoder and decoders are causal and operate under the restriction of zero delay, which implies that at each time instance, the encoder must generate codewords that can be decoded by the decoders using only the current and past codewords. For the case of discrete-time stationary scalar Gauss—Markov sources and quadratic distortion constraints, we present information-theoretic lower bounds on the average sum-rate in terms of the directed and mutual information rate between the source and the decoder reproductions. Furthermore, we show that the optimum test channel is in this case Gaussian, and it can be realized by a feedback coding scheme that utilizes prediction and correlated Gaussian noises. Operational achievable results are considered in the high-rate scenario using a simple differential pulse code modulation scheme with staggered quantizers. Using this scheme, we achieve operational rates within 0.415 bits / sample / description of the theoretical lower bounds for varying description rates

    Rate-cost tradeoffs in control

    Get PDF
    Consider a distributed control problem with a communication channel connecting the observer of a linear stochastic system to the controller. The goal of the controller is minimize a quadratic cost function. The most basic special case of that cost function is the mean-square deviation of the system state from the desired state. We study the fundamental tradeoff between the communication rate r bits/sec and the limsup of the expected cost b, and show a lower bound on the rate necessary to attain b. The bound applies as long as the system noise has a probability density function. If target cost b is not too large, that bound can be closely approached by a simple lattice quantization scheme that only quantizes the innovation, that is, the difference between the controller's belief about the current state and the true state

    Rate-Cost Tradeoffs in Control

    Get PDF
    Consider a control problem with a communication channel connecting the observer of a linear stochastic system to the controller. The goal of the controller is to minimize a quadratic cost function in the state variables and control signal, known as the linear quadratic regulator (LQR). We study the fundamental tradeoff between the communication rate r bits/sec and the expected cost b. We obtain a lower bound on a certain rate-cost function, which quantifies the minimum directed mutual information between the channel input and output that is compatible with a target LQR cost. The rate-cost function has operational significance in multiple scenarios of interest: among others, it allows us to lower-bound the minimum communication rate for fixed and variable length quantization, and for control over noisy channels. We derive an explicit lower bound to the rate-cost function, which applies to the vector, non-Gaussian, and partially observed systems, thereby extending and generalizing an earlier explicit expression for the scalar Gaussian system, due to Tatikonda el al. [2]. The bound applies as long as the differential entropy of the system noise is not −∞ . It can be closely approached by a simple lattice quantization scheme that only quantizes the innovation, that is, the difference between the controller's belief about the current state and the true state. Via a separation principle between control and communication, similar results hold for causal lossy compression of additive noise Markov sources. Apart from standard dynamic programming arguments, our technical approach leverages the Shannon lower bound, develops new estimates for data compression with coding memory, and uses some recent results on high resolution variablelength vector quantization to prove that the new converse bounds are tight
    • …
    corecore