656 research outputs found

    Eccentric connectivity index

    Full text link
    The eccentric connectivity index ξc\xi^c is a novel distance--based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as ξc(G)=∑v∈V(G)deg(v)⋅ϵ(v)\xi^c (G) = \sum_{v \in V (G)} deg (v) \cdot \epsilon (v)\,, where deg(v)deg (v) and ϵ(v)\epsilon (v) denote the vertex degree and eccentricity of vv\,, respectively. We survey some mathematical properties of this index and furthermore support the use of eccentric connectivity index as topological structure descriptor. We present the extremal trees and unicyclic graphs with maximum and minimum eccentric connectivity index subject to the certain graph constraints. Sharp lower and asymptotic upper bound for all graphs are given and various connections with other important graph invariants are established. In addition, we present explicit formulae for the values of eccentric connectivity index for several families of composite graphs and designed a linear algorithm for calculating the eccentric connectivity index of trees. Some open problems and related indices for further study are also listed.Comment: 25 pages, 5 figure

    Laplacian spectral properties of signed circular caterpillars

    Get PDF
    A circular caterpillar of girth n is a graph such that the removal of all pendant vertices yields a cycle Cn of order n. A signed graph is a pair Γ = (G, σ), where G is a simple graph and σ ∶ E(G) → {+1, −1} is the sign function defined on the set E(G) of edges of G. The signed graph Γ is said to be balanced if the number of negatively signed edges in each cycle is even, and it is said to be unbalanced otherwise. We determine some bounds for the first n Laplacian eigenvalues of any signed circular caterpillar. As an application, we prove that each signed spiked triangle (G(3; p, q, r), σ), i. e. a signed circular caterpillar of girth 3 and degree sequence πp,q,r = (p + 2, q + 2, r + 2, 1,..., 1), is determined by its Laplacian spectrum up to switching isomorphism. Moreover, in the set of signed spiked triangles of order N, we identify the extremal graphs with respect to the Laplacian spectral radius and the first two Zagreb indices. It turns out that the unbalanced spiked triangle with degree sequence πN−3,0,0 and the balanced spike triangle (G(3; p, ^ q, ^ r^), +), where each pair in {p, ^ q, ^ r^} differs at most by 1, respectively maximizes and minimizes the Laplacian spectral radius and both the Zagreb indices

    Graph Invariants of Trees with Given Degree Sequence

    Get PDF
    Graph invariants are functions defined on the graph structures that stay the same under taking graph isomorphisms. Many such graph invariants, including some commonly used graph indices in Chemical Graph Theory, are defined on vertex degrees and distances between vertices. We explore generalizations of such graph indices and the corresponding extremal problems in trees. We will also briefly mention the applications of our results

    Inequalities on Topological Indices

    Get PDF
    Topological indices have been widely used in different fields associated with scientific research. They are recognized as useful tools in applied research in Chemistry, Ecology, Biology, Physics, among others. For many years, scientists have been trying to improve the predictive power of the famous Randi’c index. This led to the introduction and study of new topological descriptors that correlate or improve the level of prediction of the Randi’c index. Among the most commonly used descriptors are the Inverse index, the first general Zagreb index and the recently introduced Arithmetic- Geometric index. In this work we study the mathematical properties and relationships of the aforementioned topological indices.Programa de Doctorado en Ingeniería Matemática por la Universidad Carlos III de MadridPresidente: Domingo de Guzmán Pestana Galván.- Secretaria: Ana Portilla Ferreira.- Vocal: Eva Tourís Loj

    New Advances and Contributions to Forestry Research

    Get PDF
    New Advances and Contributions to Forestry Research consists of 14 chapters divided into three sections and is authored by 48 researchers from 16 countries and all five continents. Section Whither the Use of Forest Resources, authored by 16 researchers, describes negative and positive practices in forestry. Forest is a complex habitat for man, animals, insects and micro-organisms and their activities may impact positively or negatively on the forest. This complex relationship is explained in the section Forest and Organisms Interactions, consisting of contributions made by six researchers. Development of tree plantations has been man’s response to forest degradation and deforestation caused by human, animals and natural disasters. Plantations of beech, spruce, Eucalyptus and other species are described in the last section, Amelioration of Dwindling Forest Resources Through Plantation Development, a section consisting of five papers authored by 20 researchers. New Advances and Contributions to Forestry Research will appeal to forest scientists, researchers and allied professionals. It will be of interest to those who care about forest and who subscribe to the adage that the last tree dies with the last man on our planet. I recommend it to you; enjoy reading it, save the forest and save life
    • …
    corecore