130 research outputs found

    Applications of Finite Model Theory: Optimisation Problems, Hybrid Modal Logics and Games.

    Get PDF
    There exists an interesting relationships between two seemingly distinct fields: logic from the field of Model Theory, which deals with the truth of statements about discrete structures; and Computational Complexity, which deals with the classification of problems by how much of a particular computer resource is required in order to compute a solution. This relationship is known as Descriptive Complexity and it is the primary application of the tools from Model Theory when they are restricted to the finite; this restriction is commonly called Finite Model Theory. In this thesis, we investigate the extension of the results of Descriptive Complexity from classes of decision problems to classes of optimisation problems. When dealing with decision problems the natural mapping from true and false in logic to yes and no instances of a problem is used but when dealing with optimisation problems, other features of a logic need to be used. We investigate what these features are and provide results in the form of logical frameworks that can be used for describing optimisation problems in particular classes, building on the existing research into this area. Another application of Finite Model Theory that this thesis investigates is the relative expressiveness of various fragments of an extension of modal logic called hybrid modal logic. This is achieved through taking the Ehrenfeucht-Fraïssé game from Model Theory and modifying it so that it can be applied to hybrid modal logic. Then, by developing winning strategies for the players in the game, results are obtained that show strict hierarchies of expressiveness for fragments of hybrid modal logic that are generated by varying the quantifier depth and the number of proposition and nominal symbols available

    On Existential MSO and its Relation to ETH

    Get PDF
    Impagliazzo et al. proposed a framework, based on the logic fragment defining the complexity class SNP, to identify problems that are equivalent to k-CNF-Sat modulo subexponential-time reducibility (serf-reducibility). The subexponential-time solvability of any of these problems implies the failure of the Exponential Time Hypothesis (ETH). In this paper, we extend the framework of Impagliazzo et al., and identify a larger set of problems that are equivalent to k-CNF-Sat modulo serf-reducibility. We propose a complexity class, referred to as Linear Monadic NP, that consists of all problems expressible in existential monadic second order logic whose expressions have a linear measure in terms of a complexity parameter, which is usually the universe size of the problem. This research direction can be traced back to Fagin\u27s celebrated theorem stating that NP coincides with the class of problems expressible in existential second order logic. Monadic NP, a well-studied class in the literature, is the restriction of the aforementioned logic fragment to existential monadic second order logic. The proposed class Linear Monadic NP is then the restriction of Monadic NP to problems whose expressions have linear measure in the complexity parameter. We show that Linear Monadic NP includes many natural complete problems such as the satisfiability of linear-size circuits, dominating set, independent dominating set, and perfect code. Therefore, for any of these problems, its subexponential-time solvability is equivalent to the failure of ETH. We prove, using logic games, that the aforementioned problems are inexpressible in the monadic fragment of SNP, and hence, are not captured by the framework of Impagliazzo et al. Finally, we show that Feedback Vertex Set is inexpressible in existential monadic second order logic, and hence is not in Linear Monadic NP, and investigate the existence of certain reductions between Feedback Vertex Set (and variants of it) and 3-CNF-Sat

    On the definability of properties of finite graphs

    Get PDF
    AbstractThis paper considers the definability of graph-properties by restricted second-order and first-order sentences. For example, it is shown that the class of Hamiltonian graphs cannot be defined by monadic second-order sentences (i.e., if quantification over the subsets of vertices is allowed); any first-order sentence that defines Hamiltonian graphs on n vertices must contain at least 12n quantifiers. The proofs use Fraïssé-Ehrenfeucht games and ultraproducts

    Expressive power and complexity of a logic with quantifiers that count proportions of sets

    Get PDF
    We present a second-order logic of proportional quantifiers, SOLP, which is essentially a first-order language extended with quantifiers that act upon second-order variables of a given arity r and count the fraction of elements in a subset of r-tuples of a model that satisfy a formula. Our logic is capable of expressing proportional versions of different problems of complexity up to NP-hard as, for example, the problem of deciding if at least a fraction 1/n of the set of vertices of a graph form a clique; and fragments within our logic capture complexity classes as NL and P, with auxiliary ordering relation. When restricted to monadic second-order variables, our logic of proportional quantifiers admits a semantic approximation based on almost linear orders, which is not as weak as other known logics with counting quantifiers (restricted to almost orders), for it does not have the bounded number of degrees property. Moreover, we show that, in this almost-ordered setting, different fragments of this logic vary in their expressive power, and show the existence of an infinite hierarchy inside our monadic language. We extend our inexpressibility result of almost-ordered structure to a fragment of SOLP, which in the presence of full order captures P. To obtain all our inexpressibility results, we developed combinatorial games appropriate for these logics, whose application could go beyond the almost-ordered models and hence are interesting by themselves.Peer ReviewedPreprin

    An optimal construction of Hanf sentences

    Get PDF
    We give the first elementary construction of equivalent formulas in Hanf normal form. The triply exponential upper bound is complemented by a matching lower bound

    Second-Order Logic and Related Systems : a game-semantical perspective (Mathematical Logic and its Applications)

    Get PDF
    This is based on tutorial lectures on second-order logic in SAML 2022. Among others, we here discuss monadic second-order logic (MSO) from a game-theoretical view-point. Although the validity of MSO in terms of standard structures is not decidable (not axiomatizable), the MSO theory of full binary tree is decidable and modal μ-calculus can be viewed as a decidable fragment of MSO

    FO model checking of interval graphs

    Get PDF
    We study the computational complexity of the FO model checking problem on interval graphs, i.e., intersection graphs of intervals on the real line. The main positive result is that FO model checking and successor-invariant FO model checking can be solved in time O(n log n) for n-vertex interval graphs with representations containing only intervals with lengths from a prescribed finite set. We complement this result by showing that the same is not true if the lengths are restricted to any set that is dense in an open subset, e.g. in the set (1, 1 + ε)
    corecore