915,995 research outputs found

    Learning Weak Constraints in Answer Set Programming

    Get PDF
    This paper contributes to the area of inductive logic programming by presenting a new learning framework that allows the learning of weak constraints in Answer Set Programming (ASP). The framework, called Learning from Ordered Answer Sets, generalises our previous work on learning ASP programs without weak constraints, by considering a new notion of examples as ordered pairs of partial answer sets that exemplify which answer sets of a learned hypothesis (together with a given background knowledge) are preferred to others. In this new learning task inductive solutions are searched within a hypothesis space of normal rules, choice rules, and hard and weak constraints. We propose a new algorithm, ILASP2, which is sound and complete with respect to our new learning framework. We investigate its applicability to learning preferences in an interview scheduling problem and also demonstrate that when restricted to the task of learning ASP programs without weak constraints, ILASP2 can be much more efficient than our previously proposed system.Comment: To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 201

    Asymmetric Pruning for Learning Cascade Detectors

    Full text link
    Cascade classifiers are one of the most important contributions to real-time object detection. Nonetheless, there are many challenging problems arising in training cascade detectors. One common issue is that the node classifier is trained with a symmetric classifier. Having a low misclassification error rate does not guarantee an optimal node learning goal in cascade classifiers, i.e., an extremely high detection rate with a moderate false positive rate. In this work, we present a new approach to train an effective node classifier in a cascade detector. The algorithm is based on two key observations: 1) Redundant weak classifiers can be safely discarded; 2) The final detector should satisfy the asymmetric learning objective of the cascade architecture. To achieve this, we separate the classifier training into two steps: finding a pool of discriminative weak classifiers/features and training the final classifier by pruning weak classifiers which contribute little to the asymmetric learning criterion (asymmetric classifier construction). Our model reduction approach helps accelerate the learning time while achieving the pre-determined learning objective. Experimental results on both face and car data sets verify the effectiveness of the proposed algorithm. On the FDDB face data sets, our approach achieves the state-of-the-art performance, which demonstrates the advantage of our approach.Comment: 14 page

    Random Relational Rules

    Get PDF
    Exhaustive search in relational learning is generally infeasible, therefore some form of heuristic search is usually employed, such as in FOIL[1]. On the other hand, so-called stochastic discrimination provides a framework for combining arbitrary numbers of weak classifiers (in this case randomly generated relational rules) in a way where accuracy improves with additional rules, even after maximal accuracy on the training data has been reached. [2] The weak classifiers must have a slightly higher probability of covering instances of their target class than of other classes. As the rules are also independent and identically distributed, the Central Limit theorem applies and as the number of weak classifiers/rules grows, coverages for different classes resemble well-separated normal distributions. Stochastic discrimination is closely related to other ensemble methods like Bagging, Boosting, or Random forests, all of which have been tried in relational learning [3, 4, 5]

    Secost: Sequential co-supervision for large scale weakly labeled audio event detection

    Full text link
    Weakly supervised learning algorithms are critical for scaling audio event detection to several hundreds of sound categories. Such learning models should not only disambiguate sound events efficiently with minimal class-specific annotation but also be robust to label noise, which is more apparent with weak labels instead of strong annotations. In this work, we propose a new framework for designing learning models with weak supervision by bridging ideas from sequential learning and knowledge distillation. We refer to the proposed methodology as SeCoST (pronounced Sequest) -- Sequential Co-supervision for training generations of Students. SeCoST incrementally builds a cascade of student-teacher pairs via a novel knowledge transfer method. Our evaluations on Audioset (the largest weakly labeled dataset available) show that SeCoST achieves a mean average precision of 0.383 while outperforming prior state of the art by a considerable margin.Comment: Accepted IEEE ICASSP 202

    Generalized Boosting Algorithms for Convex Optimization

    Full text link
    Boosting is a popular way to derive powerful learners from simpler hypothesis classes. Following previous work (Mason et al., 1999; Friedman, 2000) on general boosting frameworks, we analyze gradient-based descent algorithms for boosting with respect to any convex objective and introduce a new measure of weak learner performance into this setting which generalizes existing work. We present the weak to strong learning guarantees for the existing gradient boosting work for strongly-smooth, strongly-convex objectives under this new measure of performance, and also demonstrate that this work fails for non-smooth objectives. To address this issue, we present new algorithms which extend this boosting approach to arbitrary convex loss functions and give corresponding weak to strong convergence results. In addition, we demonstrate experimental results that support our analysis and demonstrate the need for the new algorithms we present.Comment: Extended version of paper presented at the International Conference on Machine Learning, 2011. 9 pages + appendix with proof
    corecore