633 research outputs found

    A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

    Get PDF
    We show that the k-SUM problem can be solved by a linear decision tree of depth O(n^2 log^2 n),improving the recent bound O(n^3 log^3 n) of Cardinal et al. Our bound depends linearly on k, and allows us to conclude that the number of linear queries required to decide the n-dimensional Knapsack or SubsetSum problems is only O(n^3 log n), improving the currently best known bounds by a factor of n. Our algorithm extends to the RAM model, showing that the k-SUM problem can be solved in expected polynomial time, for any fixed k, with the above bound on the number of linear queries. Our approach relies on a new point-location mechanism, exploiting "Epsilon-cuttings" that are based on vertical decompositions in hyperplane arrangements in high dimensions. A major side result of the analysis in this paper is a sharper bound on the complexity of the vertical decomposition of such an arrangement (in terms of its dependence on the dimension). We hope that this study will reveal further structural properties of vertical decompositions in hyperplane arrangements

    The Order Dimension of the Poset of Regions in a Hyperplane Arrangement

    Get PDF
    We show that the order dimension of the weak order on a Coxeter group of type A, B or D is equal to the rank of the Coxeter group, and give bounds on the order dimensions for the other finite types. This result arises from a unified approach which, in particular, leads to a simpler treatment of the previously known cases, types A and B. The result for weak orders follows from an upper bound on the dimension of the poset of regions of an arbitrary hyperplane arrangement. In some cases, including the weak orders, the upper bound is the chromatic number of a certain graph. For the weak orders, this graph has the positive roots as its vertex set, and the edges are related to the pairwise inner products of the roots.Comment: Minor changes, including a correction and an added figure in the proof of Proposition 2.2. 19 pages, 6 figure

    A vector partition function for the multiplicities of sl_k(C)

    Get PDF
    We use Gelfand-Tsetlin diagrams to write down the weight multiplicity function for the Lie algebra sl_k(C) (type A_{k-1}) as a single partition function. This allows us to apply known results about partition functions to derive interesting properties of the weight diagrams. We relate this description to that of the Duistermaat-Heckman measure from symplectic geometry, which gives a large-scale limit way to look at multiplicity diagrams. We also provide an explanation for why the weight polynomials in the boundary regions of the weight diagrams exhibit a number of linear factors. Using symplectic geometry, we prove that the partition of the permutahedron into domains of polynomiality of the Duistermaat-Heckman function is the same as that for the weight multiplicity function, and give an elementary proof of this for sl_4(C) (A_3).Comment: 34 pages, 11 figures and diagrams; submitted to Journal of Algebr
    • …
    corecore