54 research outputs found

    Constructing internally 4-connected binary matroids

    Get PDF
    This is the post-print version of the Article - Copyright @ 2013 ElsevierIn an earlier paper, we proved that an internally 4-connected binary matroid with at least seven elements contains an internally 4-connected proper minor that is at most six elements smaller. We refine this result, by giving detailed descriptions of the operations required to produce the internally 4-connected minor. Each of these operations is top-down, in that it produces a smaller minor from the original. We also describe each as a bottom-up operation, constructing a larger matroid from the original, and we give necessary and su fficient conditions for each of these bottom-up moves to produce an internally 4-connected binary matroid. From this, we derive a constructive method for generating all internally 4-connected binary matroids.This study is supported by NSF IRFP Grant 0967050, the Marsden Fund, and the National Security Agency

    Unavoidable parallel minors of regular matroids

    Get PDF
    This is the post-print version of the Article - Copyright @ 2011 ElsevierWe prove that, for each positive integer k, every sufficiently large 3-connected regular matroid has a parallel minor isomorphic to M (K_{3,k}), M(W_k), M(K_k), the cycle matroid of the graph obtained from K_{2,k} by adding paths through the vertices of each vertex class, or the cycle matroid of the graph obtained from K_{3,k} by adding a complete graph on the vertex class with three vertices.This study is partially supported by a grant from the National Security Agency

    Triangle-roundedness in matroids

    Full text link
    A matroid NN is said to be triangle-rounded in a class of matroids M\mathcal{M} if each 33-connected matroid MMM\in \mathcal{M} with a triangle TT and an NN-minor has an NN-minor with TT as triangle. Reid gave a result useful to identify such matroids as stated next: suppose that MM is a binary 33-connected matroid with a 33-connected minor NN, TT is a triangle of MM and eTE(N)e\in T\cap E(N); then MM has a 33-connected minor MM' with an NN-minor such that TT is a triangle of MM' and E(M)E(N)+2|E(M')|\le |E(N)|+2. We strengthen this result by dropping the condition that such element ee exists and proving that there is a 33-connected minor MM' of MM with an NN-minor NN' such that TT is a triangle of MM' and E(M)E(N)TE(M')-E(N')\subseteq T. This result is extended to the non-binary case and, as an application, we prove that M(K5)M(K_5) is triangle-rounded in the class of the regular matroids

    Fork-decompositions of matroids

    Get PDF
    For the abstract of this paper, please see the PDF file

    Selected Problems on Matroid Minors

    Get PDF
    This dissertation begins with an introduction to matroids and graphs. In the first chapter, we develop matroid and graph theory definitions and preliminary results sufficient to discuss the problems presented in the later chapters. These topics include duality, connectivity, matroid minors, and Cunningham and Edmonds\u27s tree decomposition for connected matroids. One of the most well-known excluded-minor results in matroid theory is Tutte\u27s characterization of binary matroids. The class of binary matroids is one of the most widely studied classes of matroids, and its members have many attractive qualities. This motivates the study of matroid classes that are close to being binary. One very natural such minor-closed class Z consists of those matroids M such that the deletion or the contraction of e is binary for all elements e of M. Chapter 2 is devoted to determining the set of excluded minors for Z. Duality plays a central role in the study of matroids. It is therefore natural to ask the following question: which matroids guarantee that, when present as minors, their duals are present as minors? We answer this question in Chapter 3. We also consider this problem with additional constraints regarding the connectivity and representability of the matroids in question. The main results of Chapter 3 deal with 3-connected matroids

    Connectivity of Matroids and Polymatroids

    Get PDF
    This dissertation is a collection of work on matroid and polymatroid connectivity. Connectivity is a useful property of matroids that allows a matroid to be decomposed naturally into its connected components, which are like blocks in a graph. The Cunningham-Edmonds tree decomposition further gives a way to decompose matroids into 3-connected minors. Much of the research below concerns alternate senses in which matroids and polymatroids can be connected. After a brief introduction to matroid theory in Chapter 1, the main results of this dissertation are given in Chapters 2 and 3. Tutte proved that, for an element e of a 2- connected matroid M , either the deletion or the contraction of e for M is 2-connected. In Chapter 2, a new notion of matroid connectivity is defined and it is shown that this new notion only enjoys the above inductive property when it agrees with the usual notion of 2-connectivity. Another result is proved to reinforce the special importance of this usual notion. In Chapter 3, a result of Brylawski and Seymour is considered. That result extends Tutte’s theorem by showing that if the element e is chosen to avoid a 2-connected minor N of M, then the deletion or contraction of e form M is not only 2-connected but maintains N as a minor. The main result of Chapter 3 proves an analogue of this result for 2-polymatroids, a natural extension of matroids. Chapter 4 describes a class of binary matroids that generalizes cubic graphs. Specifically, attention is focused on binary matroids having a cocircuit basis where every cocircuit in the basis, as well as the symmetric difference of all these cocircuits, has precisely three elements

    Excluding Kuratowski graphs and their duals from binary matroids

    Full text link
    We consider some applications of our characterisation of the internally 4-connected binary matroids with no M(K3,3)-minor. We characterise the internally 4-connected binary matroids with no minor in some subset of {M(K3,3),M*(K3,3),M(K5),M*(K5)} that contains either M(K3,3) or M*(K3,3). We also describe a practical algorithm for testing whether a binary matroid has a minor in the subset. In addition we characterise the growth-rate of binary matroids with no M(K3,3)-minor, and we show that a binary matroid with no M(K3,3)-minor has critical exponent over GF(2) at most equal to four.Comment: Some small change

    Connected hyperplanes in binary matroids

    Get PDF
    AbstractFor a 3-connected binary matroid M, let dimA(M) be the dimension of the subspace of the cocycle space spanned by the non-separating cocircuits of M avoiding A, where A⊆E(M). When A=∅, Bixby and Cunningham, in 1979, showed that dimA(M)=r(M). In 2004, when |A|=1, Lemos proved that dimA(M)=r(M)-1. In this paper, we characterize the 3-connected binary matroids having a pair of elements that meets every non-separating cocircuit. Using this result, we show that 2dimA(M)⩾r(M)-3, when M is regular and |A|=2. For |A|=3, we exhibit a family of cographic matroids with a 3-element set intersecting every non-separating cocircuit. We also construct the matroids that attains McNulty and Wu’s bound for the number of non-separating cocircuits of a simple and cosimple connected binary matroid

    A chain theorem for internally 4-connected binary matroids

    Get PDF
    This is the post-print version of the Article - Copyright @ 2011 ElsevierLet M be a matroid. When M is 3-connected, Tutte’s Wheels-and-Whirls Theorem proves that M has a 3-connected proper minor N with |E(M) − E(N)| = 1 unless M is a wheel or a whirl. This paper establishes a corresponding result for internally 4-connected binary matroids. In particular, we prove that if M is such a matroid, then M has an internally 4-connected proper minor N with |E(M) − E(N)| at most 3 unless M or its dual is the cycle matroid of a planar or Möbius quartic ladder, or a 16-element variant of such a planar ladder.This study was partially supported by the National Security Agency
    corecore