236 research outputs found

    On Vertex- and Empty-Ply Proximity Drawings

    Full text link
    We initiate the study of the vertex-ply of straight-line drawings, as a relaxation of the recently introduced ply number. Consider the disks centered at each vertex with radius equal to half the length of the longest edge incident to the vertex. The vertex-ply of a drawing is determined by the vertex covered by the maximum number of disks. The main motivation for considering this relaxation is to relate the concept of ply to proximity drawings. In fact, if we interpret the set of disks as proximity regions, a drawing with vertex-ply number 1 can be seen as a weak proximity drawing, which we call empty-ply drawing. We show non-trivial relationships between the ply number and the vertex-ply number. Then, we focus on empty-ply drawings, proving some properties and studying what classes of graphs admit such drawings. Finally, we prove a lower bound on the ply and the vertex-ply of planar drawings.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Creating 3D models of cultural heritage sites with terrestrial laser scanning and 3D imaging

    Get PDF
    Includes abstract.Includes bibliographical references.The advent of terrestrial laser-scanners made the digital preservation of cultural heritage sites an affordable technique to produce accurate and detailed 3D-computermodel representations for any kind of 3D-objects, such as buildings, infrastructure, and even entire landscapes. However, one of the key issues with this technique is the large amount of recorded points; a problem which was even more intensified by the recent advances in laser-scanning technology, which increased the data acquisition rate from 25 thousand to 1 million points per second. The following research presents a workflow for the processing of large-volume laser-scanning data, with a special focus on the needs of the Zamani initiative. The research project, based at the University of Cape Town, spatially documents African Cultural Heritage sites and Landscapes and produces meshed 3D models, of various, historically important objects, such as fortresses, mosques, churches, castles, palaces, rock art shelters, statues, stelae and even landscapes

    On Information Granulation via Data Filtering for Granular Computing-Based Pattern Recognition: A Graph Embedding Case Study

    Get PDF
    Granular Computing is a powerful information processing paradigm, particularly useful for the synthesis of pattern recognition systems in structured domains (e.g., graphs or sequences). According to this paradigm, granules of information play the pivotal role of describing the underlying (possibly complex) process, starting from the available data. Under a pattern recognition viewpoint, granules of information can be exploited for the synthesis of semantically sound embedding spaces, where common supervised or unsupervised problems can be solved via standard machine learning algorithms. In this companion paper, we follow our previous paper (Martino et al. in Algorithms 15(5):148, 2022) in the context of comparing different strategies for the automatic synthesis of information granules in the context of graph classification. These strategies mainly differ on the specific topology adopted for subgraphs considered as candidate information granules and the possibility of using or neglecting the ground-truth class labels in the granulation process and, conversely, to our previous work, we employ a filtering-based approach for the synthesis of information granules instead of a clustering-based one. Computational results on 6 open-access data sets corroborate the robustness of our filtering-based approach with respect to data stratification, if compared to a clustering-based granulation stage

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Full text link
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski, Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy), Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy

    Topological inference in graphs and images

    Get PDF
    • …
    corecore