78 research outputs found

    Vertex Sparsifiers: New Results from Old Techniques

    Get PDF
    Given a capacitated graph G=(V,E)G = (V,E) and a set of terminals KāŠ†VK \subseteq V, how should we produce a graph HH only on the terminals KK so that every (multicommodity) flow between the terminals in GG could be supported in HH with low congestion, and vice versa? (Such a graph HH is called a flow-sparsifier for GG.) What if we want HH to be a "simple" graph? What if we allow HH to be a convex combination of simple graphs? Improving on results of Moitra [FOCS 2009] and Leighton and Moitra [STOC 2010], we give efficient algorithms for constructing: (a) a flow-sparsifier HH that maintains congestion up to a factor of O(logā”k/logā”logā”k)O(\log k/\log \log k), where k=āˆ£Kāˆ£k = |K|, (b) a convex combination of trees over the terminals KK that maintains congestion up to a factor of O(logā”k)O(\log k), and (c) for a planar graph GG, a convex combination of planar graphs that maintains congestion up to a constant factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which the preimages of each terminal are connected in GG. Moreover, this result extends to minor-closed families of graphs. Our improved bounds immediately imply improved approximation guarantees for several terminal-based cut and ordering problems.Comment: An extended abstract appears in the 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2010. Final version to appear in SIAM J. Computin

    Degree-3 Treewidth Sparsifiers

    Full text link
    We study treewidth sparsifiers. Informally, given a graph GG of treewidth kk, a treewidth sparsifier HH is a minor of GG, whose treewidth is close to kk, āˆ£V(H)āˆ£|V(H)| is small, and the maximum vertex degree in HH is bounded. Treewidth sparsifiers of degree 33 are of particular interest, as routing on node-disjoint paths, and computing minors seems easier in sub-cubic graphs than in general graphs. In this paper we describe an algorithm that, given a graph GG of treewidth kk, computes a topological minor HH of GG such that (i) the treewidth of HH is Ī©(k/polylog(k))\Omega(k/\text{polylog}(k)); (ii) āˆ£V(H)āˆ£=O(k4)|V(H)| = O(k^4); and (iii) the maximum vertex degree in HH is 33. The running time of the algorithm is polynomial in āˆ£V(G)āˆ£|V(G)| and kk. Our result is in contrast to the known fact that unless NPāŠ†coNP/polyNP \subseteq coNP/{\sf poly}, treewidth does not admit polynomial-size kernels. One of our key technical tools, which is of independent interest, is a construction of a small minor that preserves node-disjoint routability between two pairs of vertex subsets. This is closely related to the open question of computing small good-quality vertex-cut sparsifiers that are also minors of the original graph.Comment: Extended abstract to appear in Proceedings of ACM-SIAM SODA 201

    Steiner Point Removal with Distortion O(logā”k)O(\log k)

    Full text link
    In the Steiner point removal (SPR) problem, we are given a weighted graph G=(V,E)G=(V,E) and a set of terminals KāŠ‚VK\subset V of size kk. The objective is to find a minor MM of GG with only the terminals as its vertex set, such that the distance between the terminals will be preserved up to a small multiplicative distortion. Kamma, Krauthgamer and Nguyen [KKN15] used a ball-growing algorithm with exponential distributions to show that the distortion is at most O(logā”5k)O(\log^5 k). Cheung [Che17] improved the analysis of the same algorithm, bounding the distortion by O(logā”2k)O(\log^2 k). We improve the analysis of this ball-growing algorithm even further, bounding the distortion by O(logā”k)O(\log k)

    On Routing Disjoint Paths in Bounded Treewidth Graphs

    Get PDF
    We study the problem of routing on disjoint paths in bounded treewidth graphs with both edge and node capacities. The input consists of a capacitated graph GG and a collection of kk source-destination pairs M={(s1,t1),ā€¦,(sk,tk)}\mathcal{M} = \{(s_1, t_1), \dots, (s_k, t_k)\}. The goal is to maximize the number of pairs that can be routed subject to the capacities in the graph. A routing of a subset Mā€²\mathcal{M}' of the pairs is a collection P\mathcal{P} of paths such that, for each pair (si,ti)āˆˆMā€²(s_i, t_i) \in \mathcal{M}', there is a path in P\mathcal{P} connecting sis_i to tit_i. In the Maximum Edge Disjoint Paths (MaxEDP) problem, the graph GG has capacities cap(e)\mathrm{cap}(e) on the edges and a routing P\mathcal{P} is feasible if each edge ee is in at most cap(e)\mathrm{cap}(e) of the paths of P\mathcal{P}. The Maximum Node Disjoint Paths (MaxNDP) problem is the node-capacitated counterpart of MaxEDP. In this paper we obtain an O(r3)O(r^3) approximation for MaxEDP on graphs of treewidth at most rr and a matching approximation for MaxNDP on graphs of pathwidth at most rr. Our results build on and significantly improve the work by Chekuri et al. [ICALP 2013] who obtained an O(rā‹…3r)O(r \cdot 3^r) approximation for MaxEDP

    Improved guarantees for vertex sparsification in planar graphs

    Get PDF

    Extensions and limits to vertex sparsification

    Get PDF
    Suppose we are given a graph G = (V, E) and a set of terminals K āŠ‚ V. We consider the problem of constructing a graph H = (K, E[subscript H]) that approximately preserves the congestion of every multicommodity flow with endpoints supported in K. We refer to such a graph as a flow sparsifier. We prove that there exist flow sparsifiers that simultaneously preserve the congestion of all multicommodity flows within an O(log k / log log k)-factor where |K| = k. This bound improves to O(1) if G excludes any fixed minor. This is a strengthening of previous results, which consider the problem of finding a graph H = (K, E[subscript H]) (a cut sparsifier) that approximately preserves the value of minimum cuts separating any partition of the terminals. Indirectly our result also allows us to give a construction for better quality cut sparsifiers (and flow sparsifiers). Thereby, we immediately improve all approximation ratios derived using vertex sparsification in [14]. We also prove an Ī©(log log k) lower bound for how well a flow sparsifier can simultaneously approximate the congestion of every multicommodity flow in the original graph. The proof of this theorem relies on a technique (which we refer to as oblivious dual certifcates) for proving super-constant congestion lower bounds against many multicommodity flows at once. Our result implies that approximation algorithms for multicommodity flow-type problems designed by a black box reduction to a "uniform" case on k nodes (see [14] for examples) must incur a super-constant cost in the approximation ratio

    Graph Sparsification by Edge-Connectivity and Random Spanning Trees

    Full text link
    We present new approaches to constructing graph sparsifiers --- weighted subgraphs for which every cut has the same value as the original graph, up to a factor of (1Ā±Ļµ)(1 \pm \epsilon). Our first approach independently samples each edge uvuv with probability inversely proportional to the edge-connectivity between uu and vv. The fact that this approach produces a sparsifier resolves a question posed by Bencz\'ur and Karger (2002). Concurrent work of Hariharan and Panigrahi also resolves this question. Our second approach constructs a sparsifier by forming the union of several uniformly random spanning trees. Both of our approaches produce sparsifiers with O(nlogā”2(n)/Ļµ2)O(n \log^2(n)/\epsilon^2) edges. Our proofs are based on extensions of Karger's contraction algorithm, which may be of independent interest
    • ā€¦
    corecore