403 research outputs found

    The role of networks in labor markets

    Get PDF
    Networks of relationships play an important role in the social and economic operation of the labor market. Social connections have been shown to be crucial in influencing the transition and efficiency in the labor market because they can quickly spread information over large segments of society. In particular in “small world” networks everyone can connect to others through very few intermediaries and information can spread far and fast over such a small-world network. The first chapter of this dissertation starts with the formal elements of social network analysis and graph theory. It then provides an overview of the emerging literature on models of small worlds. Networks characterized by very small characteristic path lengths, yet high clustering coefficients, are said to exhibit the small-world phenomenon. Since interactions or links in the academic labor market are observed easier than other labor markets, the second chapter investigates the labor market for academic economists from a social network perspective. The sample includes the top two hundred economics departments in the world and provides a separate analysis of the subset pertaining to North America. The data indicates the stronger links between higher ranked universities than between the universities in the higher and lower ranked universities. The obvious pattern of interaction in the network is that the top-ranked grantors place their Ph.D. economists mostly in group ranked below them. The small-world properties of this network are examined in the third chapter. The data confirms the small-world phenomenon in the economics academic network. Any two ranked universities can be connected through approximately three links only. Although it is shown that there is inequality in the placement of Ph.D. students, there are many centers of connections in the network. However, most of the influential universities in terms of centrality of the network are not the ones influential in granting doctoral degrees

    How to choose the most appropriate centrality measure?

    Full text link
    We propose a new method to select the most appropriate network centrality measure based on the user's opinion on how such a measure should work on a set of simple graphs. The method consists in: (1) forming a set F\cal F of candidate measures; (2) generating a sequence of sufficiently simple graphs that distinguish all measures in F\cal F on some pairs of nodes; (3) compiling a survey with questions on comparing the centrality of test nodes; (4) completing this survey, which provides a centrality measure consistent with all user responses. The developed algorithms make it possible to implement this approach for any finite set F\cal F of measures. This paper presents its realization for a set of 40 centrality measures. The proposed method called culling can be used for rapid analysis or combined with a normative approach by compiling a survey on the subset of measures that satisfy certain normative conditions (axioms). In the present study, the latter was done for the subsets determined by the Self-consistency or Bridge axioms.Comment: 26 pages, 1 table, 1 algorithm, 8 figure

    Asymmetric evolutionary games

    Full text link
    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.Comment: accepted for publication in PLOS Comp. Bio

    A Community Detection Method Towards Analysis of Xi Feng Parties in the Northern Song Dynasty

    Get PDF

    Graph Theory and Networks in Biology

    Get PDF
    In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss recent work on identifying and modelling the structure of bio-molecular networks, as well as the application of centrality measures to interaction networks and research on the hierarchical structure of such networks and network motifs. Work on the link between structural network properties and dynamics is also described, with emphasis on synchronization and disease propagation.Comment: 52 pages, 5 figures, Survey Pape

    Hardness Transitions of Star Colouring and Restricted Star Colouring

    Full text link
    We study how the complexity of the graph colouring problems star colouring and restricted star colouring vary with the maximum degree of the graph. Restricted star colouring (in short, rs colouring) is a variant of star colouring. For kNk\in \mathbb{N}, a kk-colouring of a graph GG is a function f ⁣:V(G)Zkf\colon V(G)\to \mathbb{Z}_k such that f(u)f(v)f(u)\neq f(v) for every edge uvuv of GG. A kk-colouring of GG is called a kk-star colouring of GG if there is no path u,v,w,xu,v,w,x in GG with f(u)=f(w)f(u)=f(w) and f(v)=f(x)f(v)=f(x). A kk-colouring of GG is called a kk-rs colouring of GG if there is no path u,v,wu,v,w in GG with f(v)>f(u)=f(w)f(v)>f(u)=f(w). For kNk\in \mathbb{N}, the problem kk-STAR COLOURABILITY takes a graph GG as input and asks whether GG admits a kk-star colouring. The problem kk-RS COLOURABILITY is defined similarly. Recently, Brause et al. (Electron. J. Comb., 2022) investigated the complexity of 3-star colouring with respect to the graph diameter. We study the complexity of kk-star colouring and kk-rs colouring with respect to the maximum degree for all k3k\geq 3. For k3k\geq 3, let us denote the least integer dd such that kk-STAR COLOURABILITY (resp. kk-RS COLOURABILITY) is NP-complete for graphs of maximum degree dd by Ls(k)L_s^{(k)} (resp. Lrs(k)L_{rs}^{(k)}). We prove that for k=5k=5 and k7k\geq 7, kk-STAR COLOURABILITY is NP-complete for graphs of maximum degree k1k-1. We also show that 44-RS COLOURABILITY is NP-complete for planar 3-regular graphs of girth 5 and kk-RS COLOURABILITY is NP-complete for triangle-free graphs of maximum degree k1k-1 for k5k\geq 5. Using these results, we prove the following: (i) for k4k\geq 4 and dk1d\leq k-1, kk-STAR COLOURABILITY is NP-complete for dd-regular graphs if and only if dLs(k)d\geq L_s^{(k)}; and (ii) for k4k\geq 4, kk-RS COLOURABILITY is NP-complete for dd-regular graphs if and only if Lrs(k)dk1L_{rs}^{(k)}\leq d\leq k-1
    corecore