3,184 research outputs found

    Adaptive Signal Processing Strategy for a Wind Farm System Fault Accommodation

    Get PDF
    In order to improve the availability of offshore wind farms, thus avoiding unplanned operation and maintenance costs, which can be high for offshore installations, the accommodation of faults in their earlier occurrence is fundamental. This paper addresses the design of an active fault tolerant control scheme that is applied to a wind park benchmark of nine wind turbines, based on their nonlinear models, as well as the wind and interactions between the wind turbines in the wind farm. Note that, due to the structure of the system and its control strategy, it can be considered as a fault tolerant cooperative control problem of an autonomous plant. The controller accommodation scheme provides the on-line estimate of the fault signals generated by nonlinear filters exploiting the nonlinear geometric approach to obtain estimates decoupled from both model uncertainty and the interactions among the turbines. This paper proposes also a data-driven approach to provide these disturbance terms in analytical forms, which are subsequently used for designing the nonlinear filters for fault estimation. This feature of the work, followed by the simpler solution relying on a data-driven approach, can represent the key point when on-line implementations are considered for a viable application of the proposed scheme

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Voltage Compensation In Wind Power System Using STATCOM Controlled By Soft Computing Techniques

    Get PDF
    When severe voltage sags occur in weak power systems associated with grid-connected wind farms employing doubly fed induction generators, voltage instability occurs which may lead to forced disconnection of wind turbine. Shunt flexible AC transmission system devices like static synchronous compensator (STATCOM) may be harnessed to provide voltage support by dynamic injection of reactive power. In this work, the STATCOM provided voltage compensation at the point of common coupling in five test cases, namely, simultaneous occurrence of step change (drop) in wind speed and dip in grid voltage, single line to ground, line to line, double line to ground faults and sudden increment in load by more than a thousand times. Three techniques were employed to control the STATCOM, namely, fuzzy logic, particle swarm optimization and a combination of both. A performance comparison was made among the three soft computing techniques used to control the STATCOM on the basis of the amount of voltage compensation offered at the point of common coupling. The simulations were done with the help of SimPowerSystems available with MATLAB / SIMULINK and the results validated that the STATCOM controlled by all the three techniques offered voltage compensation in all the cases considered

    Transient stability enhancement using thyristor controlled series compensator

    Get PDF
    Stability is an important issue which determines the stable operation of power system. At present, the most practical available method of transient stability analysis is time domain simulation, in which the non-linear differential equations are solved by step by step method or network reduction techniques. In this paper, FACTS devices are used  in the existing system for effective utilization of existing transmission resources. In this paper, the studies have been carried out in order to improve the transient stability of 5 bus system, and Western System Coordinating Council (WSCC) 9 bus system with fixed compensation on various lines, and the optimal location has been investigated for better results. To improve the transient stability margin further, a Thyristor Controlled Series Compensator (TCSC) has been used, and the results shows the effectiveness of the application of TCSC in improving the transient stability of power system

    Analysis and robust decentralized control of power systems using FACTS devices

    Get PDF
    Today\u27s changing electric power systems create a growing need for flexible, reliable, fast responding, and accurate answers to questions of analysis, simulation, and design in the fields of electric power generation, transmission, distribution, and consumption. The Flexible Alternating Current Transmission Systems (FACTS) technology program utilizes power electronics components to replace conventional mechanical elements yielding increased flexibility in controlling the electric power system. Benefits include decreased response times and improved overall dynamic system behavior. FACTS devices allow the design of new control strategies, e.g., independent control of active and reactive power flows, which were not realizable a decade ago. However, FACTS components also create uncertainties. Besides the choice of the FACTS devices available, decisions concerning the location, rating, and operating scheme must be made. All of them require reliable numerical tools with appropriate stability, accuracy, and validity of results. This dissertation develops methods to model and control electric power systems including FACTS devices on the transmission level as well as the application of the software tools created to simulate, analyze, and improve the transient stability of electric power systems.;The Power Analysis Toolbox (PAT) developed is embedded in the MATLAB/Simulink environment. The toolbox provides numerous models for the different components of a power system and utilizes an advanced data structure that not only increases data organization and transparency but also simplifies the efforts necessary to incorporate new elements. The functions provided facilitate the computation of steady-state solutions and perform steady-state voltage stability analysis, nonlinear dynamic studies, as well as linearization around a chosen operating point.;Applying intelligent control design in the form of a fuzzy power system damping scheme applied to the Unified Power Flow Controller (UPFC) is proposed. Supplementary damping signals are generated based on local active power flow measurements guaranteeing feasibility. The effectiveness of this controller for longitudinal power systems under dynamic conditions is shown using a Two Area - Four Machine system. When large disturbances are applied, simulation results show that this design can enhance power system operation and damping characteristics. Investigations of meshed power systems such as the New England - New York power system are performed to gain further insight into adverse controller effects

    Voltage Profile and Power Quality Improvement Using Multicell Dynamic Voltage Restorer

    Get PDF
    This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.Multi-level converter topologies are increasingly being used in various applications due to their high power, high voltage, and low harmonic levels in the output waveforms. These converter topologies produce different output voltage levels and have a highly modular structure. This paper proposes the design of a dynamic voltage restorer (DVR) based on multilevel topology to enhance the voltage profile and improve the power quality in the network. The DVR is an effective, fast-acting device which detects voltage sags and swells in a transmission line and inject a compensating voltage through a boost transformer. A simulation study is carried out under MATLAB/Simulate to demonstrate the performance of the proposed DVR circuit. The simulation results show improved transient response and enhanced power quality in the transmission network.Peer reviewe

    Interline Unified Power Quality Conditioner for Enhancing Power Quality using FOFPID-based Interleaved CUK Converter

    Get PDF
    Electrical distribution systems face increased non-linear loads due to using power electronics for the converters. Due to these non-linear loads, the system exhibits PQ problems in the distributed feeders. To enhance PQ problems in the dual feeder, fractional order fuzzy proportional integral derivative controller (FOFPID) is introduced with interline unified power quality (IUPQC) conditioner. IUPQC conditioner includes a distribution static compensator (DSTATCOM), dynamic voltage restorer (DVR) and interleaved cuk converter (ICC). DSTATCOM and DVR are used for compensating the voltages and current in the dual feeders (feeder-1 and feeder-2). Also, ICC monitors the switching between the DSTATCOM and DVR compensators by providing proper power flow. Moreover, the FOFPID controller regulates an input supply from both feeders. The simulation is performed through MATLAB/Simulink platform, demonstrating the robustness of a proposed FOFPID with an IUPQC controller. The performance of a proposed controller is analyzed through two cases for both feeders. Furthermore, the total harmonic distortions (THD) are calculated for the feeder parameters. The proposed FOFPID with IUPQC controller also maintains stability in a dual feeder. Therefore, the entire response shows the functionality and feasibility of a proposed controller

    A Control Reconfiguration Strategy for Post-Sensor FTC in Induction Motor-Based EVs

    No full text
    International audienceThis paper deals with experimental validation of a reconfiguration strategy for sensor fault-tolerant control (FTC) in induction-motor-based electric vehicles (EVs). The proposed active FTC system is illustrated using two control techniques: indirect field-oriented control (IFOC) in the case of healthy sensors and speed control with slip regulation (SCSR) in the case of failed current sensors. The main objective behind the reconfiguration strategy is to achieve a short and smooth transition when switching from a controller using a healthy sensor to another sensorless controller in the case of a sensor failure. The proposed FTC approach performances are experimentally evaluated on a 7.5-kW induction motor drive

    PID control system analysis, design, and technology

    Get PDF
    Designing and tuning a proportional-integral-derivative (PID) controller appears to be conceptually intuitive, but can be hard in practice, if multiple (and often conflicting) objectives such as short transient and high stability are to be achieved. Usually, initial designs obtained by all means need to be adjusted repeatedly through computer simulations until the closed-loop system performs or compromises as desired. This stimulates the development of "intelligent" tools that can assist engineers to achieve the best overall PID control for the entire operating envelope. This development has further led to the incorporation of some advanced tuning algorithms into PID hardware modules. Corresponding to these developments, this paper presents a modern overview of functionalities and tuning methods in patents, software packages and commercial hardware modules. It is seen that many PID variants have been developed in order to improve transient performance, but standardising and modularising PID control are desired, although challenging. The inclusion of system identification and "intelligent" techniques in software based PID systems helps automate the entire design and tuning process to a useful degree. This should also assist future development of "plug-and-play" PID controllers that are widely applicable and can be set up easily and operate optimally for enhanced productivity, improved quality and reduced maintenance requirements
    corecore