3,530 research outputs found

    Using formal metamodels to check consistency of functional views in information systems specification

    Get PDF
    UML notations require adaptation for applications such as Information Systems (IS). Thus we have defined IS-UML. The purpose of this article is twofold. First, we propose an extension to this language to deal with functional aspects of IS. We use two views to specify IS transactions: the first one is defined as a combination of behavioural UML diagrams (collaboration and state diagrams), and the second one is based on the definition of specific classes of an extended class diagram. The final objective of the article is to consider consistency issues between the various diagrams of an IS-UML specification. In common with other UML languages, we use a metamodel to define IS-UML. We use class diagrams to summarize the metamodel structure and a formal language, B, for the full metamodel. This allows us to formally express consistency checks and mapping rules between specific metamodel concepts. (C) 2007 Elsevier B.V. All rights reserved

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    Lightweight and static verification of UML executable models

    Get PDF
    Executable models play a key role in many software development methods by facilitating the (semi)automatic implementation/execution of the software system under development. This is possible because executable models promote a complete and fine-grained specification of the system behaviour. In this context, where models are the basis of the whole development process, the quality of the models has a high impact on the final quality of software systems derived from them. Therefore, the existence of methods to verify the correctness of executable models is crucial. Otherwise, the quality of the executable models (and in turn the quality of the final system generated from them) will be compromised. In this paper a lightweight and static verification method to assess the correctness of executable models is proposed. This method allows us to check whether the operations defined as part of the behavioural model are able to be executed without breaking the integrity of the structural model and returns a meaningful feedback that helps repairing the detected inconsistencies.Peer ReviewedPostprint (author's final draft

    OCL2Trigger: Deriving active mechanisms for relational databases using Model-Driven Architecture

    Get PDF
    16 pages, 10 figures.-- Issue title: "Best papers from the 2007 Australian Software Engineering Conference (ASWEC 2007), Melbourne, Australia, April 10-13, 2007, Australian Software Engineering Conference 2007".Transforming integrity constraints into active rules or triggers for verifying database consistency produces a serious and complex problem related to real time behaviour that must be considered for any implementation. Our main contribution to this work is to provide a complete approach for deriving the active mechanisms for Relational Databases from the specification of the integrity constraints by using OCL. This approach is designed in accordance with the MDA approach which consists of transforming the specified OCL clauses into a class diagram into SQL:2003 standard triggers, then transforming the standard triggers into target DBMS triggers. We believe that developing triggers and plugging them into a given model is insufficient because the behaviour of such triggers is invisible to the developers, and therefore not controllable. For this reason, a DBMS trigger verification model is used in our approach, in order to ensure the termination of trigger execution. Our approach is implemented as an add-in tool in Rational Rose called OCL2Trigger.This work is part of the "Software Process Management Platform: Modelling, reuse and measurement" TIN2004/07083 project.Publicad

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Functional Size Measurement and Model Verification for Software Model-Driven Developments: A COSMIC-based Approach

    Full text link
    Historically, software production methods and tools have a unique goal: to produce high quality software. Since the goal of Model-Driven Development (MDD) methods is no different, MDD methods have emerged to take advantage of the benefits of using conceptual models to produce high quality software. In such MDD contexts, conceptual models are used as input to automatically generate final applications. Thus, we advocate that there is a relation between the quality of the final software product and the quality of the models used to generate it. The quality of conceptual models can be influenced by many factors. In this thesis, we focus on the accuracy of the techniques used to predict the characteristics of the development process and the generated products. In terms of the prediction techniques for software development processes, it is widely accepted that knowing the functional size of applications in order to successfully apply effort models and budget models is essential. In order to evaluate the quality of generated applications, defect detection is considered to be the most suitable technique. The research goal of this thesis is to provide an accurate measurement procedure based on COSMIC for the automatic sizing of object-oriented OO-Method MDD applications. To achieve this research goal, it is necessary to accurately measure the conceptual models used in the generation of object-oriented applications. It is also very important for these models not to have defects so that the applications to be measured are correctly represented. In this thesis, we present the OOmCFP (OO-Method COSMIC Function Points) measurement procedure. This procedure makes a twofold contribution: the accurate measurement of objectoriented applications generated in MDD environments from the conceptual models involved, and the verification of conceptual models to allow the complete generation of correct final applications from the conceptual models involved. The OOmCFP procedure has been systematically designed, applied, and automated. This measurement procedure has been validated to conform to the ISO 14143 standard, the metrology concepts defined in the ISO VIM, and the accuracy of the measurements obtained according to ISO 5725. This procedure has also been validated by performing empirical studies. The results of the empirical studies demonstrate that OOmCFP can obtain accurate measures of the functional size of applications generated in MDD environments from the corresponding conceptual models.Marín Campusano, BM. (2011). Functional Size Measurement and Model Verification for Software Model-Driven Developments: A COSMIC-based Approach [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11237Palanci
    corecore