4,999 research outputs found

    Building high-quality merged ontologies from multiple sources with requirements customization

    Get PDF
    Ontologies are the prime way of organizing data in the Semantic Web. Often, it is necessary to combine several, independently developed ontologies to obtain a knowledge graph fully representing a domain of interest. Existing approaches scale rather poorly to the merging of multiple ontologies due to using a binary merge strategy. Thus, we aim to investigate the extent to which the n-ary strategy can solve the scalability problem. This thesis contributes to the following important aspects: 1. Our n-ary merge strategy takes as input a set of source ontologies and their mappings and generates a merged ontology. For efficient processing, rather than successively merging complete ontologies pairwise, we group related concepts across ontologies into partitions and merge first within and then across those partitions. 2. We take a step towards parameterizable merge methods. We have identified a set of Generic Merge Requirements (GMRs) that merged ontologies might be expected to meet. We have investigated and developed compatibilities of the GMRs by a graph-based method. 3. When multiple ontologies are merged, inconsistencies can occur due to different world views encoded in the source ontologies To this end, we propose a novel Subjective Logic-based method to handling the inconsistency occurring while merging ontologies. We apply this logic to rank and estimate the trustworthiness of conflicting axioms that cause inconsistencies within a merged ontology. 4. To assess the quality of the merged ontologies systematically, we provide a comprehensive set of criteria in an evaluation framework. The proposed criteria cover a variety of characteristics of each individual aspect of the merged ontology in structural, functional, and usability dimensions. 5. The final contribution of this research is the development of the CoMerger tool that implements all aforementioned aspects accessible via a unified interface

    Ontologies across disciplines

    Get PDF

    SNOMED CT standard ontology based on the ontology for general medical science

    Get PDF
    Background: Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT, hereafter abbreviated SCT) is acomprehensive medical terminology used for standardizing the storage, retrieval, and exchange of electronic healthdata. Some efforts have been made to capture the contents of SCT as Web Ontology Language (OWL), but theseefforts have been hampered by the size and complexity of SCT. Method: Our proposal here is to develop an upper-level ontology and to use it as the basis for defining the termsin SCT in a way that will support quality assurance of SCT, for example, by allowing consistency checks ofdefinitions and the identification and elimination of redundancies in the SCT vocabulary. Our proposed upper-levelSCT ontology (SCTO) is based on the Ontology for General Medical Science (OGMS). Results: The SCTO is implemented in OWL 2, to support automatic inference and consistency checking. Theapproach will allow integration of SCT data with data annotated using Open Biomedical Ontologies (OBO) Foundryontologies, since the use of OGMS will ensure consistency with the Basic Formal Ontology, which is the top-levelontology of the OBO Foundry. Currently, the SCTO contains 304 classes, 28 properties, 2400 axioms, and 1555annotations. It is publicly available through the bioportal athttp://bioportal.bioontology.org/ontologies/SCTO/. Conclusion: The resulting ontology can enhance the semantics of clinical decision support systems and semanticinteroperability among distributed electronic health records. In addition, the populated ontology can be used forthe automation of mobile health applications

    Description logic-based knowledge merging for concrete- and fuzzy- domain ontologies

    Get PDF
    Enterprises, especially virtual enterprises, are nowadays becoming more knowledge intensive and adopting efficient knowledge management systems to boost their competitiveness. The major challenge for knowledge management for virtual enterprises is to acquire, extract and integrate new knowledge with the existing source. Ontologies have been proved to be one of the best tools for representing knowledge with class, role and other characteristics. It is imperative to accommodate the new knowledge in the current ontologies with logical consistencies as it is tedious and costly to construct new ontologies every time after acquiring new knowledge. This article introduces a mechanism and a process to integrate new knowledge into the current system (ontology). Separate methods have been adopted for fuzzy- and concrete-domain ontologies. The process starts by finding the semantic and structural similarities between the concepts usingWordNet and description logic. Description logic–based reasoning is used next to determine the position and relationships between the incoming and existing knowledge. The experimental results provided show the efficacy of the proposed method

    Corporate Smart Content Evaluation

    Get PDF
    Nowadays, a wide range of information sources are available due to the evolution of web and collection of data. Plenty of these information are consumable and usable by humans but not understandable and processable by machines. Some data may be directly accessible in web pages or via data feeds, but most of the meaningful existing data is hidden within deep web databases and enterprise information systems. Besides the inability to access a wide range of data, manual processing by humans is effortful, error-prone and not contemporary any more. Semantic web technologies deliver capabilities for machine-readable, exchangeable content and metadata for automatic processing of content. The enrichment of heterogeneous data with background knowledge described in ontologies induces re-usability and supports automatic processing of data. The establishment of “Corporate Smart Content” (CSC) - semantically enriched data with high information content with sufficient benefits in economic areas - is the main focus of this study. We describe three actual research areas in the field of CSC concerning scenarios and datasets applicable for corporate applications, algorithms and research. Aspect- oriented Ontology Development advances modular ontology development and partial reuse of existing ontological knowledge. Complex Entity Recognition enhances traditional entity recognition techniques to recognize clusters of related textual information about entities. Semantic Pattern Mining combines semantic web technologies with pattern learning to mine for complex models by attaching background knowledge. This study introduces the afore-mentioned topics by analyzing applicable scenarios with economic and industrial focus, as well as research emphasis. Furthermore, a collection of existing datasets for the given areas of interest is presented and evaluated. The target audience includes researchers and developers of CSC technologies - people interested in semantic web features, ontology development, automation, extracting and mining valuable information in corporate environments. The aim of this study is to provide a comprehensive and broad overview over the three topics, give assistance for decision making in interesting scenarios and choosing practical datasets for evaluating custom problem statements. Detailed descriptions about attributes and metadata of the datasets should serve as starting point for individual ideas and approaches

    Towards a core ontology for information integration

    Get PDF
    In this paper, we argue that a core ontology is one of the key building blocks necessary to enable the scalable assimilation of information from diverse sources. A complete and extensible ontology that expresses the basic concepts that are common across a variety of domains and can provide the basis for specialization into domain-specific concepts and vocabularies, is essential for well-defined mappings between domain-specific knowledge representations (i.e., metadata vocabularies) and the subsequent building of a variety of services such as cross-domain searching, browsing, data mining and knowledge extraction. This paper describes the results of a series of three workshops held in 2001 and 2002 which brought together representatives from the cultural heritage and digital library communities with the goal of harmonizing their knowledge perspectives and producing a core ontology. The knowledge perspectives of these two communities were represented by the CIDOC/CRM [31], an ontology for information exchange in the cultural heritage and museum community, and the ABC ontology [33], a model for the exchange and integration of digital library information. This paper describes the mediation process between these two different knowledge biases and the results of this mediation - the harmonization of the ABC and CIDOC/CRM ontologies, which we believe may provide a useful basis for information integration in the wider scope of the involved communities

    Verification of knowledge shared across design and manufacture using a foundation ontology

    Get PDF
    Seamless computer-based knowledge sharing between departments of a manufacturing enterprise is useful in preventing unnecessary design revisions. A lack of interoperability between independently developed knowledge bases, however, is a major impediment in the development of a seamless knowledge sharing system. Interoperability, being an ability to overcome semantic and syntactic differences during computer-based knowledge sharing can be enhanced through the use of foundation ontologies. Foundation or core ontologies can be used to overcome differences existing in more specialized ontologies and to ensure a seamless sharing of knowledge. This is because these ontologies provide a common grounding for domain ontologies to be used by different functions or departments. This common bases can be used by mediation and knowledge verification systems to authenticate the meaning of knowledge understood across different domains. For this reason, this research proposes a knowledge verification framework for developing a system capable of verifying knowledge between those domain ontologies which are developed out of a common core or foundation ontology. This framework makes use of ontology logic to standardize the way concepts from a foundation and core-concepts ontology are used in domain ontologies and then by using the same principles the knowledge being shared is verified
    • …
    corecore