276 research outputs found

    Multicast Scheduling and Resource Allocation Algorithms for OFDMA-Based Systems: A Survey

    Get PDF
    Multicasting is emerging as an enabling technology for multimedia transmissions over wireless networks to support several groups of users with flexible quality of service (QoS)requirements. Although multicast has huge potential to push the limits of next generation communication systems; it is however one of the most challenging issues currently being addressed. In this survey, we explain multicast group formation and various forms of group rate determination approaches. We also provide a systematic review of recent channel-aware multicast scheduling and resource allocation (MSRA) techniques proposed for downlink multicast services in OFDMA based systems. We study these enabling algorithms, evaluate their core characteristics, limitations and classify them using multidimensional matrix. We cohesively review the algorithms in terms of their throughput maximization, fairness considerations, performance complexities, multi-antenna support, optimality and simplifying assumptions. We discuss existing standards employing multicasting and further highlight some potential research opportunities in multicast systems

    COCAM: a cooperative video edge caching and multicasting approach based on multi-agent deep reinforcement learning in multi-clouds environment

    Get PDF
    The evolution of the Internet of Things technology (IoT) has boosted the drastic increase in network traffic demand. Caching and multicasting in the multi-clouds scenario are effective approaches to alleviate the backhaul burden of networks and reduce service latency. However, existing works do not jointly exploit the advantages of these two approaches. In this paper, we propose COCAM, a cooperative video edge caching and multicasting approach based on multi-agent deep reinforcement learning to minimize the transmission number in the multi-clouds scenario with limited storage capacity in each edge cloud. Specifically, by integrating a cooperative transmission model with the caching model, we provide a concrete formulation of the joint problem. Then, we cast this decision-making problem as a multi-agent extension of the Markov decision process and propose a multi-agent actor-critic algorithm in which each agent learns a local caching strategy and further encompasses the observations of neighboring agents as constituents of the overall state. Finally, to validate the COCAM algorithm, we conduct extensive experiments on a real-world dataset. The results show that our proposed algorithm outperforms other baseline algorithms in terms of the number of video transmissions

    Mobile ad hoc networks for intelligent systems

    Get PDF
    Advances in wireless technology and portable computing along with demands for high user mobility have provided a major promotion toward the development of ad hoc networks. Mobile ad hoc networks feature dynamic topology, self-organization, limited bandwidth and battery power of a node. They do not rely on specialized routers for path discovery and traffic routing. Research on ad hoc networks has been extensively investigated in the past few years and related work has focused on many of the layers of the communications architecture. This research intends to investigate applications of MANET for intelligent systems, including intelligent transportation system (ITS), sensor network and mobile intelligent robot network, and propose some approaches to topology management, link layer multiple access and routing algorithms. Their performance is evaluated by theoretical analysis and off-the-shelf simulation tools. Most current research on ad hoc networks assumes the availability of IEEE 802.11. However, the RTS/CTS protocol of 802.11 still leads to packet collision which in turn decreases the network throughput and lifetime. For sensor networks, sensors are mostly battery operated. Hence, resolving packet collision may improve network lifetime by saving valuable power. Using space and network diversity combination, this work proposes a new packet separation approach to packet collision caused by masked nodes. Inter-vehicle communication is a key component of ITS and it is also called vehicular ad hoc network. VANET has many features different from regular MANETs in terms of mobility, network size and connectivity. Given rapid topology changes and network partitioning, this work studies how to organize the numerous vehicular nodes and establish message paths between any pair of vehicular nodes if they are not apart too far away. In urban areas, the inter-vehicle communication has different requirements and constraints than highway environments. The proposed position-based routing strategy for VANETs utilizes the traffic pattern in city environments. Packets are forwarded based on traffic lights timing sequence and the moving direction of relaying vehicles. A multicast protocol is also introduced to visualize the real time road traffic with customized scale. Only vehicles related to a source node\u27s planned trajectory will reply the query packet. The visualized real time traffic information therefore helps the driver make better decision in route planning when traffic congestion happens. Nowadays robots become more and more powerful and intelligent. They can take part in operations in a cooperative manner which makes distributed control necessary. Ad hoc robot communication network is still fresh field for researchers working on networking technology. This work investigates some key issues in robot ad hoc network and evaluate the challenges while establishing robot ad hoc networks

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    LVMM: The Localized Vehicular Multicast Middleware - a Framework for Ad Hoc Inter-Vehicles Multicast Communications

    Get PDF
    This thesis defines a novel semantic for multicast in vehicular ad hoc networks (VANETs) and it defines a middleware, the Localized Vehicular Multicast Middleware (LVMM) that enables minimum cost, source-based multicast communications in VANETs. The middleware provides support to find vehicles suitable to sustain multicast communications, to maintain multicast groups, and to execute a multicast routing protocol, the Vehicular Multicast Routing Protocol (VMRP), that delivers messages of multicast applications to all the recipients utilizing a loop-free, minimum cost path from each source to all the recipients. LVMM does not require a vehicle to know all other members: only knowledge of directly reachable nodes is required to perform the source-based routing

    Mobility prediction and multicasting in wireless networks : performance and analysis

    Get PDF
    Handoff is a call handling mechanism that is invoked when a mobile node moves from one cell to another. Such movement may lead to degradation in performance for wireless networks as a result of packet losses. A promising technique proposed in this thesis is to apply multicasting techniques aided by mobility prediction in order to improve handoff performance. In this thesis, we present a method that uses a Grey model for mobility prediction and a fuzzy logic controller that has been fine-tuned using evolutionary algorithms in order to improve prediction accuracy. We also compare the self-tuning algorithm with two evolutionary algorithms in terms of accuracy and their convergence times. Our proposed method takes into account signal strengths from the base stations and predicts the signal strength of the next candidate base station in order to provide improved handover performance. The primary decision for mobility prediction is the accurate prediction of signal strengths obtained from the base stations and remove any unwanted errors in the prediction using suitable optimisation techniques. Furthermore, the model includes the procedures of fine-tuning the predicted data using fuzzy parameters. We also propose suitable multicasting algorithms to minimise the reservation of overall network resource requirements during handoff with the mobility prediction information. To be able to efficiently solve the problem, the situation is modelled using a multicast tree that is defined to maintain connectivity with the mobile node, whilst ensuring bandwidth guarantees and a minimum hop-count. In this approach, we have tried to solve the problem by balancing two objectives through putting a weight on each of two costs. We provide a detailed description of an algorithm to implement join and prune mechanisms, which will help to build an optimal multicast tree with QoS requirements during handoff as well as incorporating dynamic changes in the positions of mobile nodes. An analysis of how mobility prediction helps in the selection of potential Access Routers (AR) with QoS requirements - which affects the multicast group size and bandwidth cost of the multicast tree -- is presented. The proposed technique tries to minimise the number of multicast tree join and prune operations. Our results show that the expected size of the multicast group increases linearly with an increase in the number of selected destination AR's for multicast during handoff. We observe that the expected number of joins and prunes from the multicast tree increases with group size. A special simulation model was developed to demonstrate both homogeneous and heterogeneous handoff which is an emerging requirement for fourth generation mobile networks. The model incorporates our mobility prediction model for heterogeneous handoff between the Wireless LAN and a cellular network. The results presented in this thesis for mobility prediction, multicasting techniques and heterogeneous handoff include proposed algorithms and models which aid in the understanding, analysing and reducing of overheads during handoff
    • …
    corecore