329 research outputs found

    Bounds on the Game Transversal Number in Hypergraphs

    Get PDF
    Let H=(V,E)H = (V,E) be a hypergraph with vertex set VV and edge set EE of order \nH = |V| and size \mH = |E|. A transversal in HH is a subset of vertices in HH that has a nonempty intersection with every edge of HH. A vertex hits an edge if it belongs to that edge. The transversal game played on HH involves of two players, \emph{Edge-hitter} and \emph{Staller}, who take turns choosing a vertex from HH. Each vertex chosen must hit at least one edge not hit by the vertices previously chosen. The game ends when the set of vertices chosen becomes a transversal in HH. Edge-hitter wishes to minimize the number of vertices chosen in the game, while Staller wishes to maximize it. The \emph{game transversal number}, τg(H)\tau_g(H), of HH is the number of vertices chosen when Edge-hitter starts the game and both players play optimally. We compare the game transversal number of a hypergraph with its transversal number, and also present an important fact concerning the monotonicity of τg\tau_g, that we call the Transversal Continuation Principle. It is known that if HH is a hypergraph with all edges of size at least~22, and HH is not a 44-cycle, then \tau_g(H) \le \frac{4}{11}(\nH+\mH); and if HH is a (loopless) graph, then \tau_g(H) \le \frac{1}{3}(\nH + \mH + 1). We prove that if HH is a 33-uniform hypergraph, then \tau_g(H) \le \frac{5}{16}(\nH + \mH), and if HH is 44-uniform, then \tau_g(H) \le \frac{71}{252}(\nH + \mH).Comment: 23 pages

    Rainbow perfect matchings in r-partite graph structures

    Get PDF
    A matching M in an edge–colored (hyper)graph is rainbow if each pair of edges in M have distinct colors. We extend the result of Erdos and Spencer on the existence of rainbow perfect matchings in the complete bipartite graph Kn,n to complete bipartite multigraphs, dense regular bipartite graphs and complete r-partite r-uniform hypergraphs. The proof of the results use the Lopsided version of the Local Lovász Lemma.Peer ReviewedPostprint (author's final draft

    Decomposing 1-Sperner hypergraphs

    Full text link
    A hypergraph is Sperner if no hyperedge contains another one. A Sperner hypergraph is equilizable (resp., threshold) if the characteristic vectors of its hyperedges are the (minimal) binary solutions to a linear equation (resp., inequality) with positive coefficients. These combinatorial notions have many applications and are motivated by the theory of Boolean functions and integer programming. We introduce in this paper the class of 11-Sperner hypergraphs, defined by the property that for every two hyperedges the smallest of their two set differences is of size one. We characterize this class of Sperner hypergraphs by a decomposition theorem and derive several consequences from it. In particular, we obtain bounds on the size of 11-Sperner hypergraphs and their transversal hypergraphs, show that the characteristic vectors of the hyperedges are linearly independent over the reals, and prove that 11-Sperner hypergraphs are both threshold and equilizable. The study of 11-Sperner hypergraphs is motivated also by their applications in graph theory, which we present in a companion paper

    Antichain cutsets of strongly connected posets

    Full text link
    Rival and Zaguia showed that the antichain cutsets of a finite Boolean lattice are exactly the level sets. We show that a similar characterization of antichain cutsets holds for any strongly connected poset of locally finite height. As a corollary, we get such a characterization for semimodular lattices, supersolvable lattices, Bruhat orders, locally shellable lattices, and many more. We also consider a generalization to strongly connected hypergraphs having finite edges.Comment: 12 pages; v2 contains minor fixes for publicatio

    Achieving New Upper Bounds for the Hypergraph Duality Problem through Logic

    Get PDF
    The hypergraph duality problem DUAL is defined as follows: given two simple hypergraphs G\mathcal{G} and H\mathcal{H}, decide whether H\mathcal{H} consists precisely of all minimal transversals of G\mathcal{G} (in which case we say that G\mathcal{G} is the dual of H\mathcal{H}). This problem is equivalent to deciding whether two given non-redundant monotone DNFs are dual. It is known that non-DUAL, the complementary problem to DUAL, is in GC(log⁡2n,PTIME)\mathrm{GC}(\log^2 n,\mathrm{PTIME}), where GC(f(n),C)\mathrm{GC}(f(n),\mathcal{C}) denotes the complexity class of all problems that after a nondeterministic guess of O(f(n))O(f(n)) bits can be decided (checked) within complexity class C\mathcal{C}. It was conjectured that non-DUAL is in GC(log⁡2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). In this paper we prove this conjecture and actually place the non-DUAL problem into the complexity class GC(log⁡2n,TC0)\mathrm{GC}(\log^2 n,\mathrm{TC}^0) which is a subclass of GC(log⁡2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). We here refer to the logtime-uniform version of TC0\mathrm{TC}^0, which corresponds to FO(COUNT)\mathrm{FO(COUNT)}, i.e., first order logic augmented by counting quantifiers. We achieve the latter bound in two steps. First, based on existing problem decomposition methods, we develop a new nondeterministic algorithm for non-DUAL that requires to guess O(log⁡2n)O(\log^2 n) bits. We then proceed by a logical analysis of this algorithm, allowing us to formulate its deterministic part in FO(COUNT)\mathrm{FO(COUNT)}. From this result, by the well known inclusion TC0⊆LOGSPACE\mathrm{TC}^0\subseteq\mathrm{LOGSPACE}, it follows that DUAL belongs also to DSPACE[log⁡2n]\mathrm{DSPACE}[\log^2 n]. Finally, by exploiting the principles on which the proposed nondeterministic algorithm is based, we devise a deterministic algorithm that, given two hypergraphs G\mathcal{G} and H\mathcal{H}, computes in quadratic logspace a transversal of G\mathcal{G} missing in H\mathcal{H}.Comment: Restructured the presentation in order to be the extended version of a paper that will shortly appear in SIAM Journal on Computin

    HipergrĂĄfok = Hypergraphs

    Get PDF
    A projekt cĂ©lkitƱzĂ©seit sikerĂŒlt megvalĂłsĂ­tani. A nĂ©gy Ă©v sorĂĄn több mint szĂĄz kivĂĄlĂł eredmĂ©ny szĂŒletett, amibƑl eddig 84 dolgozat jelent meg a tĂ©ma legkivĂĄlĂłbb folyĂłirataiban, mint Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, stb. SzĂĄmos rĂ©gĂłta fennĂĄllĂł sejtĂ©st bebizonyĂ­tottunk, egĂ©sz rĂ©gi nyitott problĂ©mĂĄt megoldottunk hipergrĂĄfokkal kapcsolatban illetve kapcsolĂłdĂł terĂŒleteken. A problĂ©mĂĄk nĂ©melyike sok Ă©ve, olykor több Ă©vtizede nyitott volt. Nem egy közvetlen kutatĂĄsi eredmĂ©ny, de szintĂ©n bizonyos Ă©rtĂ©kmĂ©rƑ, hogy a rĂ©sztvevƑk egyike a NorvĂ©g KirĂĄlyi AkadĂ©mia tagja lett Ă©s elnyerte a Steele dĂ­jat. | We managed to reach the goals of the project. We achieved more than one hundred excellent results, 84 of them appeared already in the most prestigious journals of the subject, like Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, etc. We proved several long standing conjectures, solved quite old open problems in the area of hypergraphs and related subjects. Some of the problems were open for many years, sometimes for decades. It is not a direct research result but kind of an evaluation too that a member of the team became a member of the Norvegian Royal Academy and won Steele Prize
    • 

    corecore