23,587 research outputs found

    On Universal Point Sets for Planar Graphs

    Full text link
    A set P of points in R^2 is n-universal, if every planar graph on n vertices admits a plane straight-line embedding on P. Answering a question by Kobourov, we show that there is no n-universal point set of size n, for any n>=15. Conversely, we use a computer program to show that there exist universal point sets for all n<=10 and to enumerate all corresponding order types. Finally, we describe a collection G of 7'393 planar graphs on 35 vertices that do not admit a simultaneous geometric embedding without mapping, that is, no set of 35 points in the plane supports a plane straight-line embedding of all graphs in G.Comment: Fixed incorrect numbers of universal point sets in the last par

    A Universal Point Set for 2-Outerplanar Graphs

    Full text link
    A point set SR2S \subseteq \mathbb{R}^2 is universal for a class G\cal G if every graph of G{\cal G} has a planar straight-line embedding on SS. It is well-known that the integer grid is a quadratic-size universal point set for planar graphs, while the existence of a sub-quadratic universal point set for them is one of the most fascinating open problems in Graph Drawing. Motivated by the fact that outerplanarity is a key property for the existence of small universal point sets, we study 2-outerplanar graphs and provide for them a universal point set of size O(nlogn)O(n \log n).Comment: 23 pages, 11 figures, conference version at GD 201

    On Universal Point Sets for Planar Graphs

    Full text link

    On Point-sets that Support Planar Graphs

    Get PDF
    International audienceA universal point-set supports a crossing-free drawing of any planar graph. For a planar graph with nn vertices, if bends on edges of the drawing are permitted, universal point-sets of size nn are known, but only if the bend-points are in arbitrary positions. If the locations of the bend-points must also be specified as part of the point-set, we prove that any planar graph with nn vertices can be drawn on a universal set S\cal S of O(n2/logn)O(n^2/\log n) points with at most one bend per edge and with the vertices and the bend points in S\cal S. If two bends per edge are allowed, we show that O(nlogn)O(n\log n) points are sufficient, and if three bends per edge are allowed, Θ(n)\Theta(n) points are sufficient. When no bends on edges are permitted, no universal point-set of size o(n2)o(n^2) is known for the class of planar graphs. We show that a set of nn points in balanced biconvex position supports the class of maximum degree 3 series-parallel lattices

    Small Superpatterns for Dominance Drawing

    Full text link
    We exploit the connection between dominance drawings of directed acyclic graphs and permutations, in both directions, to provide improved bounds on the size of universal point sets for certain types of dominance drawing and on superpatterns for certain natural classes of permutations. In particular we show that there exist universal point sets for dominance drawings of the Hasse diagrams of width-two partial orders of size O(n^{3/2}), universal point sets for dominance drawings of st-outerplanar graphs of size O(n\log n), and universal point sets for dominance drawings of directed trees of size O(n^2). We show that 321-avoiding permutations have superpatterns of size O(n^{3/2}), riffle permutations (321-, 2143-, and 2413-avoiding permutations) have superpatterns of size O(n), and the concatenations of sequences of riffles and their inverses have superpatterns of size O(n\log n). Our analysis includes a calculation of the leading constants in these bounds.Comment: ANALCO 2014, This version fixes an error in the leading constant of the 321-superpattern siz

    Superpatterns and Universal Point Sets

    Full text link
    An old open problem in graph drawing asks for the size of a universal point set, a set of points that can be used as vertices for straight-line drawings of all n-vertex planar graphs. We connect this problem to the theory of permutation patterns, where another open problem concerns the size of superpatterns, permutations that contain all patterns of a given size. We generalize superpatterns to classes of permutations determined by forbidden patterns, and we construct superpatterns of size n^2/4 + Theta(n) for the 213-avoiding permutations, half the size of known superpatterns for unconstrained permutations. We use our superpatterns to construct universal point sets of size n^2/4 - Theta(n), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size O(n log^O(1) n), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.Comment: GD 2013 special issue of JGA

    Drawing Arrangement Graphs In Small Grids, Or How To Play Planarity

    Full text link
    We describe a linear-time algorithm that finds a planar drawing of every graph of a simple line or pseudoline arrangement within a grid of area O(n^{7/6}). No known input causes our algorithm to use area \Omega(n^{1+\epsilon}) for any \epsilon>0; finding such an input would represent significant progress on the famous k-set problem from discrete geometry. Drawing line arrangement graphs is the main task in the Planarity puzzle.Comment: 12 pages, 8 figures. To appear at 21st Int. Symp. Graph Drawing, Bordeaux, 201
    corecore