86 research outputs found

    Uniquely List Colorability of Complete Split Graphs

    Get PDF
    The join of null graph Om and complete graph Kn, denoted by S(m; n), is called a complete split graph. In this paper, we characterize unique list colorability of the graph G = S(m; n). We shall prove that G is uniquely 3-list colorable graph if and only if m>=4, n>=4 and m + n>=10, m(G)>=4 for every 1<=m<=5 and n>=6.The join of null graph Om and complete graph Kn, denoted by S(m; n), is called a complete split graph. In this paper, we characterize unique list colorability of the graph G = S(m; n). We shall prove that G is uniquely 3-list colorable graph if and only if m>=4, n>=4 and m + n>=10, m(G)>=4 for every 1<=m<=5 and n>=6

    Entanglement Detection in the Stabilizer Formalism

    Full text link
    We investigate how stabilizer theory can be used for constructing sufficient conditions for entanglement. First, we show how entanglement witnesses can be derived for a given state, provided some stabilizing operators of the state are known. These witnesses require only a small effort for an experimental implementation and are robust against noise. Second, we demonstrate that also nonlinear criteria based on uncertainty relations can be derived from stabilizing operators. These criteria can sometimes improve the witnesses by adding nonlinear correction terms. All our criteria detect states close to Greenberger-Horne-Zeilinger states, cluster and graph states. We show that similar ideas can be used to derive entanglement conditions for states which do not fit the stabilizer formalism, such as the three-qubit W state. We also discuss connections between the witnesses and some Bell inequalities.Comment: 15 pages including 2 figures, revtex4; typos corrected, presentation improved; to appear in PR

    Multi-party entanglement in graph states

    Full text link
    Graph states are multi-particle entangled states that correspond to mathematical graphs, where the vertices of the graph take the role of quantum spin systems and edges represent Ising interactions. They are many-body spin states of distributed quantum systems that play a significant role in quantum error correction, multi-party quantum communication, and quantum computation within the framework of the one-way quantum computer. We characterize and quantify the genuine multi-particle entanglement of such graph states in terms of the Schmidt measure, to which we provide upper and lower bounds in graph theoretical terms. Several examples and classes of graphs will be discussed, where these bounds coincide. These examples include trees, cluster states of different dimension, graphs that occur in quantum error correction, such as the concatenated [7,1,3]-CSS code, and a graph associated with the quantum Fourier transform in the one-way computer. We also present general transformation rules for graphs when local Pauli measurements are applied, and give criteria for the equivalence of two graphs up to local unitary transformations, employing the stabilizer formalism. For graphs of up to seven vertices we provide complete characterization modulo local unitary transformations and graph isomorphies.Comment: 22 pages, 15 figures, 2 tables, typos corrected (e.g. in measurement rules), references added/update

    Some Conclusion on Unique k

    Get PDF
    If a graph G admits a k-list assignment L such that G has a unique L-coloring, then G is called uniquely k-list colorable graph, or UkLC graph for short. In the process of characterizing UkLC graphs, the complete multipartite graphs K1*r,s(r,s∈N) are often researched. But it is usually not easy to construct the unique k-list assignment of K1*r,s. In this paper, we give some propositions about the property of the graph K1*r,s when it is UkLC, which provide a very significant guide for constructing such list assignment. Then a special example of UkLC graphs K1*r,s as a application of these propositions is introduced. The conclusion will pave the way to characterize UkLC complete multipartite graphs

    Multiparticle entanglement purification for two-colorable graph states

    Full text link
    We investigate multiparticle entanglement purification schemes which allow one to purify all two colorable graph states, a class of states which includes e.g. cluster states, GHZ states and codewords of various error correction codes. The schemes include both recurrence protocols and hashing protocols. We analyze these schemes under realistic conditions and observe for a generic error model that the threshold value for imperfect local operations depends on the structure of the corresponding interaction graph, but is otherwise independent of the number of parties. The qualitative behavior can be understood from an analytically solvable model which deals only with a restricted class of errors. We compare direct multiparticle entanglement purification protocols with schemes based on bipartite entanglement purification and show that the direct multiparticle entanglement purification is more efficient and the achievable fidelity of the purified states is larger. We also show that the purification protocol allows one to produce private entanglement, an important aspect when using the produced entangled states for secure applications. Finally we discuss an experimental realization of a multiparty purification protocol in optical lattices which is issued to improve the fidelity of cluster states created in such systems.Comment: 22 pages, 8 figures; replaced with published versio

    Uniquely list colorability of the graph Kn2 + Om

    Get PDF
    Given a list L(v) for each vertex v, we say that the graph G is L-colorable if there is a proper vertex coloring of G where each vertex v takes its color from L(v). The graph is uniquely k-list colorable if there is a list assignment L such that jL(v)j = k for every vertex v and the graph has exactly one L-coloring with these lists. In this paper, we characterize uniquely list colorability of the graph G = Kn2 + Om. We shall prove that if n = 2 then G is uniquely 3-list colorable if and only if m >= 9, if n = 3 and m >=1 then G is uniquely 3-list colorable, if n >=4 then G is uniquely k-list colorable with k =[m/2]+1, and if m>=n-1, entonce G es UnLC

    ON GARLANDS IN x-UNIQUELY COLORABLE GRAPHS

    Full text link
    a graph G is called x-uniquely colorable, if all its x-colorings induce the same partion of the vertex set into one-color components. For x-uniquely colorable graphs new bound of the number of vertex set partions into x + 1 cocliques is found. © 2019 gein p.a
    • …
    corecore