2,870 research outputs found

    Systematics of organic molecules, graph topology and Hamilton circuits. A general outline of the Dendral system Interim report

    Get PDF
    Systematics of organic molecules, graph topology and Hamilton circuit

    Pattern Mining and Events Discovery in Molecular Dynamics Simulations Data

    Get PDF
    Molecular dynamics simulation method is widely used to calculate and understand a wide range of properties of materials. A lot of research efforts have been focused on simulation techniques but relatively fewer works are done on methods for analyzing the simulation results. Large-scale simulations usually generate massive amounts of data, which make manual analysis infeasible, particularly when it is necessary to look into the details of the simulation results. In this dissertation, we propose a system that uses computational method to automatically perform analysis of simulation data, which represent atomic position-time series. The system identifies, in an automated fashion, the micro-level events (such as the bond formation/breaking) that are connected to large movements of the atoms, which is considered to be relevant to the diffusion property of the material. The challenge is how to discover such interesting atomic activities which are the key to understanding macro-level (bulk) properties of material. Furthermore, simply mining the structure graph of a material (the graph where the constituent atoms form nodes and the bonds between the atoms form edges) offers little help in this scenario. It is the patterns among the atomic dynamics that may be good candidate for underlying mechanisms. We propose an event-graph model to model the atomic dynamics and propose a graph mining algorithm to discover popular subgraphs in the event graph. We also analyze such patterns in primitive ring mining process and calculate the distributions of primitive rings during large and normal movement of atoms. Because the event graph is a directed acyclic graph, our mining algorithm uses a new graph encoding scheme that is based on topological- sorting. This encoding scheme also ensures that our algorithm enumerates candidate subgraphs without any duplication. Our experiments using simulation data of silica liquid show the effectiveness of the proposed mining system

    Chemoinformatics approaches for new drugs discovery

    Get PDF
    Chemoinformatics uses computational methods and technologies to solve chemical problems. It works on molecular structures, their representations, properties and related data. The first and most important phase in this field is the translation of interconnected atomic systems into in-silico models, ensuring complete and correct chemical information transfer. In the last 20 years the chemical databases evolved from the state of molecular repositories to research tools for new drugs identification, while the modern high-throughput technologies allow for continuous chemical libraries size increase as highlighted by publicly available repository like PubChem [http://pubchem.ncbi.nlm.nih.gov/], ZINC [http://zinc.docking.org/], ChemSpider[http://www.chemspider. com/]. Chemical libraries fundamental requirements are molecular uniqueness, absence of ambiguity, chemical correctness (related to atoms, bonds, chemical orthography), standardized storage and registration formats. The aim of this work is the development of chemoinformatics tools and data for drug discovery process. The first part of the research project was focused on accessible commercial chemical space analysis; looking for molecular redundancy and in-silico models correctness in order to identify a unique and univocal molecular descriptor for chemical libraries indexing. This allows for the 0%-redundancy achievement on a 42 millions compounds library. The protocol was implemented as MMsDusty, a web based tool for molecular databases cleaning. The major protocol developed is MMsINC, a chemoinformatics platform based on a starting number of 4 millions non-redundant high-quality annotated and biomedically relevant chemical structures; the library is now being expanded up to 460 millions compounds. MMsINC is able to perform various types of queries, like substructure or similarity search and descriptors filtering. MMsINC is interfaced with PDB(Protein Data Bank)[http://www.rcsb.org/pdb/home/home.do] and related to approved drugs. The second developed protocol is called pepMMsMIMIC, a peptidomimetic screening tool based on multiconformational chemical libraries; the screening process uses pharmacophoric fingerprints similarity to identify small molecules able to geometrically and chemically mimic endogenous peptides or proteins. The last part of this project lead to the implementation of an optimized and exhaustive conformational space analysis protocol for small molecules libraries; this is crucial for high quality 3D molecular models prediction as requested in chemoinformatics applications. The torsional exploration was optimized in the range of most frequent dihedral angles seen in X-ray solved small molecules structures of CSD(Cambridge Structural Database); by appling this on a 89 millions structures library was generated a library of 2.6 x 10 exp 7 high quality conformers. Tools, protocols and platforms developed in this work allow for chemoinformatics analysis and screening on large size chemical libraries achieving high quality, correct and unique chemical data and in-silico model

    A treatment of stereochemistry in computer aided organic synthesis

    Get PDF
    This thesis describes the author’s contributions to a new stereochemical processing module constructed for the ARChem retrosynthesis program. The purpose of the module is to add the ability to perform enantioselective and diastereoselective retrosynthetic disconnections and generate appropriate precursor molecules. The module uses evidence based rules generated from a large database of literature reactions. Chapter 1 provides an introduction and critical review of the published body of work for computer aided synthesis design. The role of computer perception of key structural features (rings, functions groups etc.) and the construction and use of reaction transforms for generating precursors is discussed. Emphasis is also given to the application of strategies in retrosynthetic analysis. The availability of large reaction databases has enabled a new generation of retrosynthesis design programs to be developed that use automatically generated transforms assembled from published reactions. A brief description of the transform generation method employed by ARChem is given. Chapter 2 describes the algorithms devised by the author for handling the computer recognition and representation of the stereochemical features found in molecule and reaction scheme diagrams. The approach is generalised and uses flexible recognition patterns to transform information found in chemical diagrams into concise stereo descriptors for computer processing. An algorithm for efficiently comparing and classifying pairs of stereo descriptors is described. This algorithm is central for solving the stereochemical constraints in a variety of substructure matching problems addressed in chapter 3. The concise representation of reactions and transform rules as hyperstructure graphs is described. Chapter 3 is concerned with the efficient and reliable detection of stereochemical symmetry in both molecules, reactions and rules. A novel symmetry perception algorithm, based on a constraints satisfaction problem (CSP) solver, is described. The use of a CSP solver to implement an isomorph‐free matching algorithm for stereochemical substructure matching is detailed. The prime function of this algorithm is to seek out unique retron locations in target molecules and then to generate precursor molecules without duplications due to symmetry. Novel algorithms for classifying asymmetric, pseudo‐asymmetric and symmetric stereocentres; meso, centro, and C2 symmetric molecules; and the stereotopicity of trigonal (sp2) centres are described. Chapter 4 introduces and formalises the annotated structural language used to create both retrosynthetic rules and the patterns used for functional group recognition. A novel functional group recognition package is described along with its use to detect important electronic features such as electron‐withdrawing or donating groups and leaving groups. The functional groups and electronic features are used as constraints in retron rules to improve transform relevance. Chapter 5 details the approach taken to design detailed stereoselective and substrate controlled transforms from organised hierarchies of rules. The rules employ a rich set of constraints annotations that concisely describe the keying retrons. The application of the transforms for collating evidence based scoring parameters from published reaction examples is described. A survey of available reaction databases and the techniques for mining stereoselective reactions is demonstrated. A data mining tool was developed for finding the best reputable stereoselective reaction types for coding as transforms. For various reasons it was not possible during the research period to fully integrate this work with the ARChem program. Instead, Chapter 6 introduces a novel one‐step retrosynthesis module to test the developed transforms. The retrosynthesis algorithms use the organisation of the transform rule hierarchy to efficiently locate the best retron matches using all applicable stereoselective transforms. This module was tested using a small set of selected target molecules and the generated routes were ranked using a series of measured parameters including: stereocentre clearance and bond cleavage; example reputation; estimated stereoselectivity with reliability; and evidence of tolerated functional groups. In addition a method for detecting regioselectivity issues is presented. This work presents a number of algorithms using common set and graph theory operations and notations. Appendix A lists the set theory symbols and meanings. Appendix B summarises and defines the common graph theory terminology used throughout this thesis

    A complete small molecule dataset from the protein data bank

    Get PDF
    AbstractA complete set of 6300 small molecule ligands was extracted from the protein data bank, and deposited online in PubChem as data source ‘SMID’. This set’s major improvement over prior methods is the inclusion of cyclic polypeptides and branched polysaccharides, including an unambiguous nomenclature, in addition to normal monomeric ligands. Only the best available example of each ligand structure is retained, and an additional dataset is maintained containing co-ordinates for all examples of each structure. Attempts are made to correct ambiguous atomic elements and other common errors, and a perception algorithm was used to determine bond order and aromaticity when no other information was available

    A Central Partition of Molecular Conformational Space.III. Combinatorial Determination of the Volume Spanned by a Molecular System

    Full text link
    In the first work of this series [physics/0204035] it was shown that the conformational space of a molecule could be described to a fair degree of accuracy by means of a central hyperplane arrangement. The hyperplanes divide the espace into a hierarchical set of cells that can be encoded by the face lattice poset of the arrangement. The model however, lacked explicit rotational symmetry which made impossible to distinguish rotated structures in conformational space. This problem was solved in a second work [physics/0404052] by sorting the elementary 3D components of the molecular system into a set of morphological classes that can be properly oriented in a standard 3D reference frame. This also made possible to find a solution to the problem that is being adressed in the present work: for a molecular system immersed in a heat bath we want to enumerate the subset of cells in conformational space that are visited by the molecule in its thermal wandering. If each visited cell is a vertex on a graph with edges to the adjacent cells, here it is explained how such graph can be built

    Extending Graph (Discrete) Derivative Descriptors to N-Tuple Atom-Relations

    Get PDF
    In the present manuscript, an extension of the previously defined Graph Derivative Indices (GDIs) is discussed. To achieve this objective, the concept of a hypermatrix, conceived from the calculation of the frequencies of triple and quadruple atom relations in a set of connected sub-graphs, is introduced. This set of subgraphs is generated following a predefined criterion, known as the event (S), being in this particular case the connectivity among atoms. The triple and quadruple relations frequency matrices serve as a basis for the computation of triple and quadruple discrete derivative indices, respectively. The GDIs are implemented in a computational program denominated DIVATI (acronym for DIscrete DeriVAtive Type Indices), a module of TOMOCOMD-CARDD program. Shannon‟s entropy-based variability analysis demonstrates that the GDIs show major variability than others indices used in QSAR/QSPR researches. In addition, it can be appreciated when the indices are extended over n-elements from the graph, its quality increases, principally when they are used in a combined way. QSPR modeling of the physicochemical properties Log P and Log K of the 2-furylethylenes derivatives reveals that the GDIs obtained using the tripleand quadruple matrix approaches yield superior performance to the duplex matrix approach. Moreover, the statistical parameters for models obtained with the GDI method are superior to those reported in the literature by using other methods. It can therefore be suggested that the GDI method, seem to be a promissory tool to reckon on in QSAR/QSPR studies, virtual screening of compound datasets and similarity/dissimilarity evaluations
    • 

    corecore