38,270 research outputs found

    Deterministic Real-Time Tree-Walking-Storage Automata

    Full text link
    We study deterministic tree-walking-storage automata, which are finite-state devices equipped with a tree-like storage. These automata are generalized stack automata, where the linear stack storage is replaced by a non-linear tree-like stack. Therefore, tree-walking-storage automata have the ability to explore the interior of the tree storage without altering the contents, with the possible moves of the tree pointer corresponding to those of tree-walking automata. In addition, a tree-walking-storage automaton can append (push) non-existent descendants to a tree node and remove (pop) leaves from the tree. Here we are particularly considering the capacities of deterministic tree-walking-storage automata working in real time. It is shown that even the non-erasing variant can accept rather complicated unary languages as, for example, the language of words whose lengths are powers of two, or the language of words whose lengths are Fibonacci numbers. Comparing the computational capacities with automata from the classical automata hierarchy, we derive that the families of languages accepted by real-time deterministic (non-erasing) tree-walking-storage automata is located between the regular and the deterministic context-sensitive languages. There is a context-free language that is not accepted by any real-time deterministic tree-walking-storage automaton. On the other hand, these devices accept a unary language in non-erasing mode that cannot be accepted by any classical stack automaton, even in erasing mode and arbitrary time. Basic closure properties of the induced families of languages are shown. In particular, we consider Boolean operations (complementation, union, intersection) and AFL operations (union, intersection with regular languages, homomorphism, inverse homomorphism, concatenation, iteration). It turns out that the two families in question have the same properties and, in particular, share all but one of these closure properties with the important family of deterministic context-free languages.Comment: In Proceedings NCMA 2023, arXiv:2309.0733

    Quotient Complexity of Bifix-, Factor-, and Subword-Free Regular Language

    Get PDF
    A language LL is prefix-free if whenever words uu and vv are in LL and uu is a prefix of vv, then u=vu=v. Suffix-, factor-, and subword-free languages are defined similarly, where by ``subword" we mean ``subsequence", and a language is bifix-free if it is both prefix- and suffix-free. These languages have important applications in coding theory. The quotient complexity of an operation on regular languages is defined as the number of left quotients of the result of the operation as a function of the numbers of left quotients of the operands. The quotient complexity of a regular language is the same as its state complexity, which is the number of states in the complete minimal deterministic finite automaton accepting the language. The state/quotient complexity of operations in the classes of prefix- and suffix-free languages has been studied before. Here, we study the complexity of operations in the classes of bifix-, factor-, and subword-free languages. We find tight upper bounds on the quotient complexity of intersection, union, difference, symmetric difference, concatenation, star, and reversal in these three classes of languages.Natural Sciences and Engineering Research Council of Canada [OGP0000871]Slovak Research and Development Agency [APVV-0035-10]Algorithms, Automata, and Discrete Data Structures VEGA, [2/0183/11

    Nondeterministic State Complexity for Suffix-Free Regular Languages

    Full text link
    We investigate the nondeterministic state complexity of basic operations for suffix-free regular languages. The nondeterministic state complexity of an operation is the number of states that are necessary and sufficient in the worst-case for a minimal nondeterministic finite-state automaton that accepts the language obtained from the operation. We consider basic operations (catenation, union, intersection, Kleene star, reversal and complementation) and establish matching upper and lower bounds for each operation. In the case of complementation the upper and lower bounds differ by an additive constant of two.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Finitary languages

    Full text link
    The class of omega-regular languages provides a robust specification language in verification. Every omega-regular condition can be decomposed into a safety part and a liveness part. The liveness part ensures that something good happens "eventually". Finitary liveness was proposed by Alur and Henzinger as a stronger formulation of liveness. It requires that there exists an unknown, fixed bound b such that something good happens within b transitions. In this work we consider automata with finitary acceptance conditions defined by finitary Buchi, parity and Streett languages. We study languages expressible by such automata: we give their topological complexity and present a regular-expression characterization. We compare the expressive power of finitary automata and give optimal algorithms for classical decisions questions. We show that the finitary languages are Sigma 2-complete; we present a complete picture of the expressive power of various classes of automata with finitary and infinitary acceptance conditions; we show that the languages defined by finitary parity automata exactly characterize the star-free fragment of omega B-regular languages; and we show that emptiness is NLOGSPACE-complete and universality as well as language inclusion are PSPACE-complete for finitary parity and Streett automata
    • …
    corecore