60 research outputs found

    On unification of QBF resolution-based calculi

    Get PDF
    Several calculi for quantified Boolean formulas (QBFs) exist, but relations between them are not yet fully understood. This paper defines a novel calculus, which is resolution-based and enables unification of the principal existing resolution-based QBF calculi, namely Q-resolution, long-distance Q-resolution and the expansion-based calculus Exp+Res. All these calculi play an important role in QBF solving. This paper shows simulation results for the new calculus and some of its variants. Further, we demonstrate how to obtain winning strategies for the universal player from proofs in the calculus. We believe that this new proof system provides an underpinning necessary for formal analysis of modern QBF solvers. © 2014 Springer-Verlag Berlin Heidelberg

    Lifting QBF Resolution Calculi to DQBF

    Get PDF
    We examine the existing resolution systems for quantified Boolean formulas (QBF) and answer the question which of these calculi can be lifted to the more powerful Dependency QBFs (DQBF). An interesting picture emerges: While for QBF we have the strict chain of proof systems Q-Res < IR-calc < IRM-calc, the situation is quite different in DQBF. Q-Res and likewise universal resolution are too weak: they are not complete. IR-calc has the right strength: it is sound and complete. IRM-calc is too strong: it is not sound any more, and the same applies to long-distance resolution. Conceptually, we use the relation of DQBF to EPR and explain our new DQBF calculus based on IR-calc as a subsystem of first-order resolutio

    QBF Proof Complexity

    Get PDF
    Quantified Boolean Formulas (QBF) and their proof complexity are not as well understood as propositional formulas, yet remain an area of interest due to their relation to QBF solving. Proof systems for QBF provide a theoretical underpinning for the performance of these solvers. We define a novel calculus IR-calc, which enables unification of the principal existing resolution-based QBF calculi and applies to the more powerful Dependency QBF (DQBF). We completely reveal the relative power of important QBF resolution systems, settling in particular the relationship between the two different types of resolution-based QBF calculi. The most challenging part of this comparison is to exhibit hard formulas that underlie the exponential separations of the proof systems. In contrast to classical proof complexity we are currently short of lower bound techniques for QBF proof systems. To this end we exhibit a new proof technique for showing lower bounds in QBF proof systems based on strategy extraction. We also find that the classical lower bound techniques of the prover-delayer game and feasible interpolation can be lifted to a QBF setting and provide new lower bounds. We investigate more powerful proof systems such as extended resolution and Frege systems. We define and investigate new QBF proof systems that mix propositional rules with a reduction rule, we find the strategy extraction technique also works and directly lifts lower bounds from circuit complexity. Such a direct transfer from circuit to proof complexity lower bounds has often been postulated, but had not been formally established for propositional proof systems prior to this work. This leads to strong lower bounds for restricted versions of QBF Frege, in particular an exponential lower bound for QBF Frege systems operating with AC0[p] circuits. In contrast, any non-trivial lower bound for propositional AC0[p]-Frege constitutes a major open problem

    Dependency Schemes in QBF Calculi: Semantics and Soundness

    Get PDF
    We study the parametrisation of QBF resolution calculi by dependency schemes. One of the main problems in this area is to understand for which dependency schemes the resulting calculi are sound. Towards this end we propose a semantic framework for variable independence based on ‘exhibition’ by QBF models, and use it to express a property of dependency schemes called full exhibition that is known to be sufficient for soundness in Q-resolution. Introducing a generalised form of the long-distance resolution rule, we propose a complete parametrisation of classical long-distance Q-resolution, and show that full exhibition remains sufficient for soundness. We demonstrate that our approach applies to the current research frontiers by proving that the reflexive resolution path dependency scheme is fully exhibited

    Feasible Interpolation for QBF Resolution Calculi

    Get PDF
    In sharp contrast to classical proof complexity we are currently short of lower bound techniques for QBF proof systems. In this paper we establish the feasible interpolation technique for all resolution-based QBF systems, whether modelling CDCL or expansion-based solving. This both provides the first general lower bound method for QBF proof systems as well as largely extends the scope of classical feasible interpolation. We apply our technique to obtain new exponential lower bounds to all resolution-based QBF systems for a new class of QBF formulas based on the clique problem. Finally, we show how feasible interpolation relates to the recently established lower bound method based on strategy extraction

    Proof Complexity of Resolution-based QBF Calculi

    Get PDF

    Understanding Cutting Planes for QBFs

    Get PDF
    We define a cutting planes system CP+8red for quantified Boolean formulas (QBF) and analyse the proof-theoretic strength of this new calculus. While in the propositional case, Cutting Planes is of intermediate strength between resolution and Frege, our findings here show that the situation in QBF is slightly more complex: while CP+8red is again weaker than QBF Frege and stronger than the CDCL-based QBF resolution systems Q-Res and QU-Res, it turns out to be incomparable to even the weakest expansion-based QBF resolution system 8Exp+Res. Technically, our results establish the effectiveness of two lower boun

    Are Short Proofs Narrow? QBF Resolution is not so Simple

    Get PDF
    The ground-breaking paper “Short Proofs Are Narrow -- Resolution Made Simple” by Ben-Sasson and Wigderson (J. ACM 2001) introduces what is today arguably the main technique to obtain resolution lower bounds: to show a lower bound for the width of proofs. Another important measure for resolution is space, and in their fundamental work, Atserias and Dalmau (J. Comput. Syst. Sci. 2008) show that lower bounds for space again can be obtained via lower bounds for width. In this article, we assess whether similar techniques are effective for resolution calculi for quantified Boolean formulas (QBFs). There are a number of different QBF resolution calculi like Q-resolution (the classical extension of propositional resolution to QBF) and the more recent calculi ∀Exp+Res and IR-calc. For these systems, a mixed picture emerges. Our main results show that the relations both between size and width and between space and width drastically fail in Q-resolution, even in its weaker tree-like version. On the other hand, we obtain positive results for the expansion-based resolution systems ∀Exp+Res and IR-calc, however, only in the weak tree-like models. Technically, our negative results rely on showing width lower bounds together with simultaneous upper bounds for size and space. For our positive results, we exhibit space and width-preserving simulations between QBF resolution calculi
    • 

    corecore