321 research outputs found

    A high performance scan flip-flop design for serial and mixed mode scan test

    Get PDF

    Scan Test Coverage Improvement Via Automatic Test Pattern Generation (Atpg) Tool Configuration

    Get PDF
    The scan test coverage improvement by using automatic test pattern generation (ATPG) tool configuration was investigated. Improving the test coverage is essential in detecting manufacturing defects in semiconductor industry so that high quality products can be supplied to consumers. The ATPG tool used was Mentor Graphics Tessent TestKompress (version 2014.1). The study was done by setting up a few experiments of utilizing and modifying ATPG commands and switches, observing the test coverage improvement from the statistical reports provided during pattern generation process and providing relatable discussions. By modifying the ATPG commands, it can be expected to have some improvement in the test coverage. The scan test patterns generated were stuck-at test patterns. Based on the experiments done, comparison was made on the different coverage readings and the most optimized method and flow of ATPG were determined. The most optimized flow gave an improvement of 0.91% in test coverage which is acceptable since this method does not involve a change in design. The test patterns generated were converted and tested using automatic test equipment (ATE) to observe its performance on real silicon. The test coverage improvement using ATPG tool instead of the design-based method is important as a faster workaround for back-end engineers to provide high quality test contents in such a short product development duration

    RAPPID: an asynchronous instruction length decoder

    Get PDF
    Journal ArticleThis paper describes an investigation of potential advantages and risks of applying an aggressive asynchronous design methodology to Intel Architecture. RAPPID ("Revolving Asynchronous Pentium® Processor Instruction Decoder"), a prototype IA32 instruction length decoding and steering unit, was implemented using self-timed techniques. RAPPID chip was fabricated on a 0.25m CMOS process and tested successfully. Results show significant advantages-in particular, performance of 2.5-4.5 instructions/nS-with manageable risks using this design technology. RAPPID achieves three times the throughput and half the latency, dissipating only half the power and requiring about the same area as an existing 400MHz clocked circuit

    RAPPID: an asynchronous instruction length decoder

    Get PDF
    Journal ArticleThis paper describes an investigation of potential advantages and risks of applying an aggressive asynchronous design methodology to Intel Architecture. RAPPID ("Revolving Asynchronous Pentium® Processor Instruction Decoder"), a prototype IA32 instruction length decoding and steering unit, was implemented using self-timed techniques. RAPPID chip was fabricated on a 0.25m CMOS process and tested successfully. Results show significant advantages-in particular, performance of 2.5-4.5 instructions/nS-with manageable risks using this design technology. RAPPID achieves three times the throughput and half the latency, dissipating only half the power and requiring about the same area as an existing 400MHz clocked circuit

    Automatic test pattern generation for asynchronous circuits

    Get PDF
    The testability of integrated circuits becomes worse with transistor dimensions reaching nanometer scales. Testing, the process of ensuring that circuits are fabricated without defects, becomes inevitably part of the design process; a technique called design for test (DFT). Asynchronous circuits have a number of desirable properties making them suitable for the challenges posed by modern technologies, but are severely limited by the unavailability of EDA tools for DFT and automatic test-pattern generation (ATPG). This thesis is motivated towards developing test generation methodologies for asynchronous circuits. In total four methods were developed which are aimed at two different fault models: stuck-at faults at the basic logic gate level and transistor-level faults. The methods were evaluated using a set of benchmark circuits and compared favorably to previously published work. First, ABALLAST is a partial-scan DFT method adapting the well-known BALLAST technique for asynchronous circuits where balanced structures are used to guide the selection of the state-holding elements that will be scanned. The test inputs are automatically provided by a novel test pattern generator, which uses time frame unrolling to deal with the remaining, non-scanned sequential C-elements. The second method, called AGLOB, uses algorithms from strongly-connected components in graph graph theory as a method for finding the optimal position of breaking the loops in the asynchronous circuit and adding scan registers. The corresponding ATPG method converts cyclic circuits into acyclic for which standard tools can provide test patterns. These patterns are then automatically converted for use in the original cyclic circuits. The third method, ASCP, employs a new cycle enumeration method to find the loops present in a circuit. Enumerated cycles are then processed using an efficient set covering heuristic to select the scan elements for the circuit to be tested.Applying these methods to the benchmark circuits shows an improvement in fault coverage compared to previous work, which, for some circuits, was substantial. As no single method consistently outperforms the others in all benchmarks, they are all valuable as a designer’s suite of tools for testing. Moreover, since they are all scan-based, they are compatible and thus can be simultaneously used in different parts of a larger circuit. In the final method, ATRANTE, the main motivation of developing ATPG is supplemented by transistor level test generation. It is developed for asynchronous circuits designed using a State Transition Graph (STG) as their specification. The transistor-level circuit faults are efficiently mapped onto faults that modify the original STG. For each potential STG fault, the ATPG tool provides a sequence of test vectors that expose the difference in behavior to the output ports. The fault coverage obtained was 52-72 % higher than the coverage obtained using the gate level tests. Overall, four different design for test (DFT) methods for automatic test pattern generation (ATPG) for asynchronous circuits at both gate and transistor level were introduced in this thesis. A circuit extraction method for representing the asynchronous circuits at a higher level of abstraction was also implemented. Developing new methods for the test generation of asynchronous circuits in this thesis facilitates the test generation for asynchronous designs using the CAD tools available for testing the synchronous designs. Lessons learned and the research questions raised due to this work will impact the future work to probe the possibilities of developing robust CAD tools for testing the future asynchronous designs

    Application of an electron microscope conductive mode of operation for the study of optoelectronic devices

    Get PDF
    Imperial Users onl

    An asynchronous instruction length decoder

    Get PDF
    Journal ArticleAbstract-This paper describes an investigation of potential advantages and pitfalls of applying an asynchronous design methodology to an advanced microprocessor architecture. A prototype complex instruction set length decoding and steering unit was implemented using self-timed circuits. [The Revolving Asynchronous Pentium® Processor Instruction Decoder (RAPPID) design implemented the complete Pentium II® 32-bit MMX instruction set.] The prototype chip was fabricated on a 0.25-CMOS process and tested successfully. Results show significant advantages-in particular, performance of 2.5-4.5 instructions per nanosecond-with manageable risks using this design technology. The prototype achieves three times the throughput and half the latency, dissipating only half the power and requiring about the same area as the fastest commercial 400-MHz clocked circuit fabricated on the same process

    An asynchronous instruction length decoder

    Get PDF
    Journal ArticleThis paper describes an investigation of potential advantages and pitfalls of applying an asynchronous design methodology to an advanced microprocessor architecture. A prototype complex instruction set length decoding and steering unit was implemented using self-timed circuits. [The Revolving Asynchronous Pentium® Processor Instruction Decoder (RAPPID) design implemented the complete Pentium II® 32-bit MMX instruction set.] The prototype chip was fabricated on a 0.25-CMOS process and tested successfully. Results show significant advantages-in particular, performance of 2.5-4.5 instructions per nanosecond-with manageable risks using this design technology. The prototype achieves three times the throughput and half the latency, dissipating only half the power and requiring about the same area as the fastest commercial 400-MHz clocked circuit fabricated on the same process

    Infrastructures and Algorithms for Testable and Dependable Systems-on-a-Chip

    Get PDF
    Every new node of semiconductor technologies provides further miniaturization and higher performances, increasing the number of advanced functions that electronic products can offer. Silicon area is now so cheap that industries can integrate in a single chip usually referred to as System-on-Chip (SoC), all the components and functions that historically were placed on a hardware board. Although adding such advanced functionality can benefit users, the manufacturing process is becoming finer and denser, making chips more susceptible to defects. Today’s very deep-submicron semiconductor technologies (0.13 micron and below) have reached susceptibility levels that put conventional semiconductor manufacturing at an impasse. Being able to rapidly develop, manufacture, test, diagnose and verify such complex new chips and products is crucial for the continued success of our economy at-large. This trend is expected to continue at least for the next ten years making possible the design and production of 100 million transistor chips. To speed up the research, the National Technology Roadmap for Semiconductors identified in 1997 a number of major hurdles to be overcome. Some of these hurdles are related to test and dependability. Test is one of the most critical tasks in the semiconductor production process where Integrated Circuits (ICs) are tested several times starting from the wafer probing to the end of production test. Test is not only necessary to assure fault free devices but it also plays a key role in analyzing defects in the manufacturing process. This last point has high relevance since increasing time-to-market pressure on semiconductor fabrication often forces foundries to start volume production on a given semiconductor technology node before reaching the defect densities, and hence yield levels, traditionally obtained at that stage. The feedback derived from test is the only way to analyze and isolate many of the defects in today’s processes and to increase process’s yield. With the increasing need of high quality electronic products, at each new physical assembly level, such as board and system assembly, test is used for debugging, diagnosing and repairing the sub-assemblies in their new environment. Similarly, the increasing reliability, availability and serviceability requirements, lead the users of high-end products performing periodic tests in the field throughout the full life cycle. To allow advancements in each one of the above scaling trends, fundamental changes are expected to emerge in different Integrated Circuits (ICs) realization disciplines such as IC design, packaging and silicon process. These changes have a direct impact on test methods, tools and equipment. Conventional test equipment and methodologies will be inadequate to assure high quality levels. On chip specialized block dedicated to test, usually referred to as Infrastructure IP (Intellectual Property), need to be developed and included in the new complex designs to assure that new chips will be adequately tested, diagnosed, measured, debugged and even sometimes repaired. In this thesis, some of the scaling trends in designing new complex SoCs will be analyzed one at a time, observing their implications on test and identifying the key hurdles/challenges to be addressed. The goal of the remaining of the thesis is the presentation of possible solutions. It is not sufficient to address just one of the challenges; all must be met at the same time to fulfill the market requirements

    Development of a CMOS IDDq Testing Environment

    Get PDF
    A majority of defects found in CMOS technology display elevated quiescent current magnitudes but still may pass functionality tests. By monitoring this power supply current, defect coverage can be elevated past the traditional stuck-at-fault coverage. This study provides a test methodology centered around current supply monitoring. By analyzing fabrication data, defect models, built-in current sensors, current and delay estimation, test set generation, and the QTAG standard, a technique is developed for CMOS integrated circuit testing. A built-in current sensor is presented, which through simulation, exhibits fast detection time. Novel techniques to enhance this time are also presented
    corecore