17 research outputs found

    Sound Localization by Echolocating Bats

    Get PDF
    Echolocating bats emit ultrasonic vocalizations and listen to echoes reflected back from objects in the path of the sound beam to build a spatial representation of their surroundings. Important to understanding the representation of space through echolocation are detailed studies of the cues used for localization, the sonar emission patterns and how this information is assembled. This thesis includes three studies, one on the directional properties of the sonar receiver, one on the directional properties of the sonar transmitter, and a model that demonstrates the role of action in building a representation of auditory space. The general importance of this work to a broader understanding of spatial localization is discussed. Investigations of the directional properties of the sonar receiver reveal that interaural level difference and monaural spectral notch cues are both dependent on sound source azimuth and elevation. This redundancy allows flexibility that an echolocating bat may need when coping with complex computational demands for sound localization. Using a novel method to measure bat sonar emission patterns from freely behaving bats, I show that the sonar beam shape varies between vocalizations. Consequently, the auditory system of a bat may need to adapt its computations to accurately localize objects using changing acoustic inputs. Extra-auditory signals that carry information about pinna position and beam shape are required for auditory localization of sound sources. The auditory system must learn associations between extra-auditory signals and acoustic spatial cues. Furthermore, the auditory system must adapt to changes in acoustic input that occur with changes in pinna position and vocalization parameters. These demands on the nervous system suggest that sound localization is achieved through the interaction of behavioral control and acoustic inputs. A sensorimotor model demonstrates how an organism can learn space through auditory-motor contingencies. The model also reveals how different aspects of sound localization, such as experience-dependent acquisition, adaptation, and extra-auditory influences, can be brought together under a comprehensive framework. This thesis presents a foundation for understanding the representation of auditory space that builds upon acoustic cues, motor control, and learning dynamic associations between action and auditory inputs

    Environmental Clutter Elicits Behavioral Adaptations During Natural Behaviors in Echolocating Bats

    Get PDF
    The natural environment is filled with clutter that creates challenges for animals participating in routine tasks like orientation, foraging, and communication. For echolocating bats that primarily rely on an active sensory system, the effects of acoustic and physical clutter become more prominent with the potential to completely degrade the individuals’ ability effectively navigate their environment or engage in prey capture. From sonar jamming moths and competitive conspecifics to rapid prey pursuit in dense forests, bats must quickly adapt their sensory-guided flight behaviors in real-time to remain effective aerial predators. To explore the sources of acoustic clutter and their effects on natural bat behaviors, a literature review is presented on the historical and current perspectives on sonar jamming and the underlying mechanisms of the jamming avoidance response. This is followed by experimental evidence of bats making use of a jamming avoidance response when presented with playback of heterospecific bat calls thought to decrease foraging efficacy. Bats were found to significantly alter their individual echolocation call features in a manner that is thought to improve the signal-to-noise ratio, which would aid in the increased detection of their own echoes. The remaining chapters explore how bats might make use of multisensory cues when environmental conditions are unfavorable for echolocation alone and how bats adjust their flight strategies when navigating in a novel environment filled with physical clutter. These chapters respectively report that multimodal cues comprised of visual and acoustic information lead to enhancement of responses during an obstacle avoidance task and that significant changes in flight kinematics can be observed in cluttered vs. open environments

    Engineering derivatives from biological systems for advanced aerospace applications

    Get PDF
    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs

    How worms move in 3D

    Get PDF
    Animals that live in the sky, underwater or underground display unique three dimensional behaviours made possible by their ability to generate movement in all directions. As animals explore their environment, they constantly adapt their locomotion strategies to balance factors such as distance travelled, speed, and energy expenditure. While exploration strategies have been widely studied across a variety of species, how animals explore 3D space remains an open problem. The nematode Caenorhabditis elegans presents an ideal candidate for the study of 3D exploration as it is naturally found in complex fluid and granular environments and is well sized (~1mm long) for the simultaneous capture of individual postures and long term trajectories using a fixed imaging setup. However, until recently C. elegans has been studied almost exclusively in planar environments and in 3D neither its modes of locomotion nor its exploration strategies are known. Here we present methods for reconstructing microscopic postures and tracking macroscopic trajectories from a large corpus of triaxial recordings of worms freely exploring complex gelatinous fluids. To account for the constantly changing optical properties of these gels we develop a novel differentiable renderer to construct images from 3D postures for direct comparison with the recorded images. The method is robust to interference such as air bubbles and dirt trapped in the gel, stays consistent through complex sequences of postures and recovers reliable estimates from low-resolution, blurry images. Using this approach we generate a large dataset of 3D exploratory trajectories (over 6 hours) and midline postures (over 4 hours). We find that C. elegans explore 3D space through the composition of quasi-planar regions separated by turns and variable-length runs. To achieve this, C. elegans use locomotion gaits and complex manoeuvres that differ from those previously observed on an agar surface. We show that the associated costs of locomotion increase with non-planarity and we develop a mathematical model to probe the implications of this connection. We find that quasi-planar strategies (such as we find in the data) yield the largest volumes explored as they provide a balance between 3D coverage and trajectory distance. Taken together, our results link locomotion primitives with exploration strategies in the context of short term volumetric foraging to provide a first integrated study into how worms move in 3D

    Development of Robust Control Strategies for Autonomous Underwater Vehicles

    Get PDF
    The resources of the energy and chemical balance in the ocean sustain mankind in many ways. Therefore, ocean exploration is an essential task that is accomplished by deploying Underwater Vehicles. An Underwater Vehicle with autonomy feature for its navigation and control is called Autonomous Underwater Vehicle (AUV). Among the task handled by an AUV, accurately positioning itself at a desired position with respect to the reference objects is called set-point control. Similarly, tracking of the reference trajectory is also another important task. Battery recharging of AUV, positioning with respect to underwater structure, cable, seabed, tracking of reference trajectory with desired accuracy and speed to avoid collision with the guiding vehicle in the last phase of docking are some significant applications where an AUV needs to perform the above tasks. Parametric uncertainties in AUV dynamics and actuator torque limitation necessitate to design robust control algorithms to achieve motion control objectives in the face of uncertainties. Sliding Mode Controller (SMC), H / μ synthesis, model based PID group controllers are some of the robust controllers which have been applied to AUV. But SMC suffers from less efficient tuning of its switching gains due to model parameters and noisy estimated acceleration states appearing in its control law. In addition, demand of high control effort due to high frequency chattering is another drawback of SMC. Furthermore, real-time implementation of H / μ synthesis controller based on its stability study is restricted due to use of linearly approximated dynamic model of an AUV, which hinders achieving robustness. Moreover, model based PID group controllers suffer from implementation complexities and exhibit poor transient and steady-state performances under parametric uncertainties. On the other hand model free Linear PID (LPID) has inherent problem of narrow convergence region, i.e.it can not ensure convergence of large initial error to zero. Additionally, it suffers from integrator-wind-up and subsequent saturation of actuator during the occurrence of large initial error. But LPID controller has inherent capability to cope up with the uncertainties. In view of addressing the above said problem, this work proposes wind-up free Nonlinear PID with Bounded Integral (BI) and Bounded Derivative (BD) for set-point control and combination of continuous SMC with Nonlinear PID with BI and BD namely SM-N-PID with BI and BD for trajectory tracking. Nonlinear functions are used for all P,I and D controllers (for both of set-point and tracking control) in addition to use of nonlinear tan hyperbolic function in SMC(for tracking only) such that torque demand from the controller can be kept within a limit. A direct Lyapunov analysis is pursued to prove stable motion of AUV. The efficacies of the proposed controllers are compared with other two controllers namely PD and N-PID without BI and BD for set-point control and PD plus Feedforward Compensation (FC) and SM-NPID without BI and BD for tracking control. Multiple AUVs cooperatively performing a mission offers several advantages over a single AUV in a non-cooperative manner; such as reliability and increased work efficiency, etc. Bandwidth limitation in acoustic medium possess challenges in designing cooperative motion control algorithm for multiple AUVs owing to the necessity of communication of sensors and actuator signals among AUVs. In literature, undirected graph based approach is used for control design under communication constraints and thus it is not suitable for large number of AUVs participating in a cooperative motion plan. Formation control is a popular cooperative motion control paradigm. This thesis models the formation as a minimally persistent directed graph and proposes control schemes for maintaining the distance constraints during the course of motion of entire formation. For formation control each AUV uses Sliding Mode Nonlinear PID controller with Bounded Integrator and Bounded Derivative. Direct Lyapunov stability analysis in the framework of input-to-state stability ensures the stable motion of formation while maintaining the desired distance constraints among the AUVs

    Measurement of total sound energy density in enclosures at low frequencies:Abstract of paper

    Get PDF

    Ocean Noise

    Get PDF
    Scientific and societal concern about the effects of underwater sound on marine ecosystems is growing. While iconic megafauna was of initial concern, more and more taxa are being included. Some countries have joined in multi-national initiatives to measure, monitor and mitigate environmental impacts of ocean noise at large, trans-boundary spatial scales. Approaches to regulating ocean noise change as new scientific evidence becomes available, but may also differ by country. The OCEANOISE conference series has provided a platform for the exchange of scientific results, management approaches, research needs, stakeholder concerns, etc. Attendees have represented various sectors, including academia, offshore industry, defence, NGOs, consultants and government regulators. The published articles in the Special Issue cover a range of topics and applications central to ocean noise
    corecore