11,290 research outputs found

    Fibred product of commutative algebras: generators and relations

    Full text link
    The method of direct computation of universal (fibred) product in the category of commutative associative algebras of finite type with unity over a field is given and proven. The field of coefficients is not supposed to be algebraically closed and can be of any characteristic. Formation of fibred product of commutative associative algebras is an algebraic counterpart of gluing algebraic schemes by means of some equivalence relation in algebraic geometry. If initial algebras are finite-dimensional vector spaces the dimension of their product obeys Grassmann-like formula. Finite-dimensional case means geometrically the strict version of adding two collections of points containing some common part. The method involves description of algebras by generators and relations on input and returns similar description of the product algebra. It is "ready-to-eat" even for computer realization. The product algebra is well-defined: taking another descriptions of the same algebras leads to isomorphic product algebra. Also it is proven that the product algebra enjoys universal property, i.e. it is indeed fibred product. The input data is a triple of algebras and a pair of homomorphisms A1f1A0f2A2A_1\stackrel{f_1}{\to}A_0 \stackrel{f_2}{\leftarrow}A_2. Algebras and homomorphisms can be described in any fashion. We prove that for computing the fibred product it is enough to restrict to the case when fi,i=1,2,f_i,i=1,2, are surjective and describe how to reduce to surjective case. Also the way to choose generators and relations for input algebras is considered.Comment: 15 pages, generalization of result of previous versio

    Twisting algebras using non-commutative torsors

    Full text link
    Non-commutative torsors (equivalently, two-cocycles) for a Hopf algebra can be used to twist comodule algebras. After surveying and extending the literature on the subject, we prove a theorem that affords a presentation by generators and relations for the algebras obtained by such twisting. We give a number of examples, including new constructions of the quantum affine spaces and the quantum tori.Comment: 27 pages. Masuoka is a new coauthor. Introduction was revised. Sections 1 and 2 were thoroughly restructured. The presentation theorem in Section 3 is now put in a more general framework and has a more general formulation. Section 4 was shortened. All examples (quantum affine spaces and tori, twisting of SL(2), twisting of the enveloping algebra of sl(2)) are left unchange

    Bethe subalgebras in affine Birman--Murakami--Wenzl algebras and flat connections for q-KZ equations

    Get PDF
    Commutative sets of Jucys-Murphyelements for affine braid groups of A(1),B(1),C(1),D(1)A^{(1)},B^{(1)},C^{(1)},D^{(1)} types were defined. Construction of RR-matrix representations of the affine braid group of type C(1)C^{(1)} and its distinguish commutative subgroup generated by the C(1)C^{(1)}-type Jucys--Murphy elements are given. We describe a general method to produce flat connections for the two-boundary quantum Knizhnik-Zamolodchikov equations as necessary conditions for Sklyanin's type transfer matrix associated with the two-boundary multicomponent Zamolodchikov algebra to be invariant under the action of the C(1)C^{(1)}-type Jucys--Murphy elements. We specify our general construction to the case of the Birman--Murakami--Wenzl algebras. As an application we suggest a baxterization of the Dunkl--Cherednik elements YsY's in the double affine Hecke algebra of type AA

    Noncommutative curves and noncommutative surfaces

    Full text link
    In this survey article we describe some geometric results in the theory of noncommutative rings and, more generally, in the theory of abelian categories. Roughly speaking and by analogy with the commutative situation, the category of graded modules modulo torsion over a noncommutative graded ring of quadratic, respectively cubic growth should be thought of as the noncommutative analogue of a projective curve, respectively surface. This intuition has lead to a remarkable number of nontrivial insights and results in noncommutative algebra. Indeed, the problem of classifying noncommutative curves (and noncommutative graded rings of quadratic growth) can be regarded as settled. Despite the fact that no classification of noncommutative surfaces is in sight, a rich body of nontrivial examples and techniques, including blowing up and down, has been developed.Comment: Suggestions by many people (in particular Haynes Miller and Dennis Keeler) have been incorporated. The formulation of some results has been improve
    corecore