1,000 research outputs found

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code

    Dual-Tree Complex Wavelet Transform in the Frequency Domain and an Application to Signal Classification

    Full text link
    We examine Kingsbury's dual-tree complex wavelet transform in the frequency domain, where it can be formulated for standard wavelet filters without special filter design and apply the method to the classification of signals. The obtained transforms achieve low shift sensitivity and better directionality compared to the real discrete wavelet transform while retaining the perfect reconstruction property

    各種の性質を改善した直交DTCWTの設計に関する研究

    Get PDF
    The Dual tree complex wavelet transforms (DTCWTs) have been found to be successful in many applications of signal and image processing. DTCWTs employ two real wavelet transforms, where one wavelet corresponds to the real part of complex wavelet and the other is the imaginary part. Two wavelet bases are required to be a Hilbert transform pair. Thus, DTCWTs are nearly shift invariant and have a good directional selectivity in two or higher dimensions with limited redundancies. In this dissertation, we propose two new classes of DTCWTs with improved properties. In Chapter 2, we review the Fourier transform at first and then introduce the fundamentals of dual tree complex wavelet transform. The wavelet transform has been proved to be a successful tool to express the signal in time and frequency domain simultaneously. To obtain the wavelet coefficients efficiently, the discrete wavelet transform has been introduced since it can be achieved by a tree of two-channel filter banks. Then, we discuss the design conditions of two-channel filter banks, i.e., the perfect reconstruction and orthonormality. Additionally, some properties of scaling and wavelet functions including orthonormality, symmetry and vanishing moments are also given. Moreover, the structure of DTCWT is introduced, where two wavelet bases are required to form a Hilbert transform pair. Thus, the corresponding scaling lowpass filters must satisfy the half-sample delay condition. Finally, the objective measures of quality are given to evaluate the performance of the complex wavelet. In Chapter 3, we propose a new class of DTCWTs with improved analyticity and frequency selectivity by using general IIR filters with numerator and denominator of different degree. In the common-factor technique proposed by Selesnick, the maximally at allpass filter was used to satisfy the halfsample delay condition, resulting in poor analyticity of complex wavelets. Thus, to improve the analyticity of complex wavelets, we present a method for designing allpass filters with the specified degree of flatness and equiripple phase response in the approximation band. Moreover, to improve the frequency selectivity of scaling lowpass filters, we locate the specified number of zeros at z = -1 and minimize the stopband error. The well-known Remez exchange algorithm has been applied to approximate the equiripple response. Therefore, a set of filter coefficients can be easily obtained by solving the eigenvalue problem. Furthermore, we investigate the performance on the proposed DTCWTs and dedicate how to choose the approximation band and stopband properly. It is shown that the conventional DTCWTs proposed by Selesnick are only the special cases of DTCWTs proposed in this dissertation. In Chapter 4, we propose another class of almost symmetric DTCWTs with arbitrary center of symmetry. We specify the degree of flatness of group delay, and the number of vanishing moments, then apply the Remez exchange algorithm to minimize the difference between two scaling lowpass filters in the frequency domain, in order to improve the analyticity of complex wavelets. Therefore, the equiripple behaviour of the error function can be obtained through a few iterations. Moreover, two scaling lowpass filters can be obtained simultaneously. As a result, the complex wavelets are orthogonal and almost symmetric, and have the improved analyticity. Since the group delay of scaling lowpass filters can be arbitrarily specified, the scaling functions have the arbitrary center of symmetry. Finally, several experiments of signal denoising are carried out to demonstrate the efficiency of the proposed DTCWTs. It is clear that the proposed DTCWTs can achieve better performance on noise reduction.電気通信大学201

    ShearLab 3D: Faithful Digital Shearlet Transforms based on Compactly Supported Shearlets

    Get PDF
    Wavelets and their associated transforms are highly efficient when approximating and analyzing one-dimensional signals. However, multivariate signals such as images or videos typically exhibit curvilinear singularities, which wavelets are provably deficient of sparsely approximating and also of analyzing in the sense of, for instance, detecting their direction. Shearlets are a directional representation system extending the wavelet framework, which overcomes those deficiencies. Similar to wavelets, shearlets allow a faithful implementation and fast associated transforms. In this paper, we will introduce a comprehensive carefully documented software package coined ShearLab 3D (www.ShearLab.org) and discuss its algorithmic details. This package provides MATLAB code for a novel faithful algorithmic realization of the 2D and 3D shearlet transform (and their inverses) associated with compactly supported universal shearlet systems incorporating the option of using CUDA. We will present extensive numerical experiments in 2D and 3D concerning denoising, inpainting, and feature extraction, comparing the performance of ShearLab 3D with similar transform-based algorithms such as curvelets, contourlets, or surfacelets. In the spirit of reproducible reseaerch, all scripts are accessible on www.ShearLab.org.Comment: There is another shearlet software package (http://www.mathematik.uni-kl.de/imagepro/members/haeuser/ffst/) by S. H\"auser and G. Steidl. We will include this in a revisio

    Hilbert pairs of M-band orthonormal wavelet bases

    Get PDF
    International audienceRecently, there has been a growing interest for wavelet frames corresponding to the union of an orthonormal wavelet basis and its dual Hilbert transformed wavelet basis. However, most of the existing works specifically address the dyadic case. In this paper, we consider orthonormal M-band wavelet decompositions, since we are motivated by their advantages in terms of frequency selectivity and symmetry of the analysis functions, for M > 2. More precisely, we establish phase conditions for a pair of critically subsampled M-band filter banks. The conditions we obtain generalize a previous result given in the two-band case. We also show that, when the primal filter bank and its wavelets have symmetry, it is inherited by their duals. Furthermore, we give a design example where the number of vanishing moments of the approximate dual wavelets is imposed numerically to be the same as for the primal ones
    corecore