898 research outputs found

    A first approach to an axiomatic model of multi-measures

    Get PDF
    We establish an axiomatic model of multi-measures, capturing some classes of measures studied in the fuzzy sets literature, where they are applied to only one or two arguments

    Fast and Accurate OOV Decoder on High-Level Features

    Full text link
    This work proposes a novel approach to out-of-vocabulary (OOV) keyword search (KWS) task. The proposed approach is based on using high-level features from an automatic speech recognition (ASR) system, so called phoneme posterior based (PPB) features, for decoding. These features are obtained by calculating time-dependent phoneme posterior probabilities from word lattices, followed by their smoothing. For the PPB features we developed a special novel very fast, simple and efficient OOV decoder. Experimental results are presented on the Georgian language from the IARPA Babel Program, which was the test language in the OpenKWS 2016 evaluation campaign. The results show that in terms of maximum term weighted value (MTWV) metric and computational speed, for single ASR systems, the proposed approach significantly outperforms the state-of-the-art approach based on using in-vocabulary proxies for OOV keywords in the indexed database. The comparison of the two OOV KWS approaches on the fusion results of the nine different ASR systems demonstrates that the proposed OOV decoder outperforms the proxy-based approach in terms of MTWV metric given the comparable processing speed. Other important advantages of the OOV decoder include extremely low memory consumption and simplicity of its implementation and parameter optimization.Comment: Interspeech 2017, August 2017, Stockholm, Sweden. 201

    Managing Vagueness with Fuzzy in Hierarchical Big Data:INNS Conference on Big Data 2015 Program San Francisco, CA, USA 8-10 August 2015

    Get PDF
    AbstractOut of the web of linked open data, comes a sense of networked “Big Data.” This large scale interconnected data is hierarchical, and often messy and full of subjective bias particularly when mass collaboration is concerned (e.g. wikipedia). In this paper we apply fuzzy set theory, specifically the X-μ approach which is shown to be more efficient than a standard fuzzy approach, to attributes within linked data. We look at hierarchical structures, using an example from the films subset of the DBpedia data repository. The hierarchical nature of film categories lends itself well to our application, and we apply fuzzy models to handle the vagueness in attributes such as film length, film budget, and box office takings

    Fuzzy algebras of concepts

    Get PDF
    Preconcepts are basic units of knowledge that form the basis of formal concepts in formal concept analysis (FCA). This paper investigates the relations among different kinds of preconcepts, such as protoconcepts, meet and join-semiconcepts and formal concepts. The first contribution of this paper, is to present a fuzzy powerset lattice gradation, that coincides with the preconcept lattice at its 1-cut. The second and more significant contribution, is to introduce a preconcept algebra gradation that yields different algebras for protoconcepts, semiconcepts, and concepts at different cuts. This result reveals new insights into the structure and properties of the different categories of preconcepts.Partial funding for open access charge: Universidad de Málag

    Łukasiewicz-Moisil Many-Valued Logic Algebra of Highly-Complex Systems

    Get PDF
    A novel approach to self-organizing, highly-complex systems (HCS), such as living organisms and artificial intelligent systems (AIs), is presented which is relevant to Cognition, Medical Bioinformatics and Computational Neuroscience. Quantum Automata (QAs) were defined in our previous work as generalized, probabilistic automata with quantum state spaces (Baianu, 1971). Their next-state functions operate through transitions between quantum states defined by the quantum equations of motion in the Schroedinger representation, with both initial and boundary conditions in space-time. Such quantum automata operate with a quantum logic, or Q-logic, significantly different from either Boolean or Łukasiewicz many-valued logic. A new theorem is proposed which states that the category of quantum automata and automata--homomorphisms has both limits and colimits. Therefore, both categories of quantum automata and classical automata (sequential machines) are bicomplete. A second new theorem establishes that the standard automata category is a subcategory of the quantum automata category. The quantum automata category has a faithful representation in the category of Generalized (M,R)--Systems which are open, dynamic biosystem networks with defined biological relations that represent physiological functions of primordial organisms, single cells and higher organisms

    Relational Approach to the L-Fuzzy Concept Analysis

    Get PDF
    Modern industrial production systems benefit from the classification and processing of objects and their attributes. In general, the object classification procedure can coincide with vagueness. Vagueness is a common problem in object analysis that exists at various stages of classification, including ambiguity in input data, overlapping boundaries between classes or regions, and uncertainty in defining or extracting the properties and relationships of objects. To manage the ambiguity mentioned in the classification of objects, using a framework for L-fuzzy relations, and displaying such uncertainties by it can be a solution. Obtaining the least unreliable and uncertain output associated with the original data is the main concern of this thesis. Therefore, my general approach to this research can be categorized as follows: We developed an L-Fuzzy Concept Analysis as a generalization of a regular Concept Analysis. We start our work by providing the input data. Data is stored in a table (database). The next step is the creation of the contexts and concepts from the given original data using some structures. In the next stage, rules, or patterns (Attribute Implications) from the data will be generated. This includes all rules and a minimal base of rules. All of them are using L-fuzziness due to uncertainty. This requires L-fuzzy relations that will be implemented as L -valued matrices. In the end, everything is nicely packed in a convenient application and implemented in Java programming language. Generally, our approach is done in an algebraic framework that covers both regular and L -Fuzzy FCA, simultaneously. The tables we started with are already L-valued (not crisp) in our implementation. In other words, we work with the L-Fuzzy data directly. This is the idea here. We start with vague data. In simple terms, the data is shown using L -valued tables (vague data) trying to relate objects with their attributes at the start of the implementation. Generating attribute implications from many-valued contexts by a relational theory is the purpose of this thesis, i.e, a range of degrees is used to indicate the relationship between objects and their properties. The smallest degree corresponds to the classical no and the greatest degree corresponds to the classical yes in the table
    corecore