711 research outputs found

    On Tree-Constrained Matchings and Generalizations

    Get PDF
    We consider the following \textsc{Tree-Constrained Bipartite Matching} problem: Given two rooted trees T1=(V1,E1)T_1=(V_1,E_1), T2=(V2,E2)T_2=(V_2,E_2) and a weight function w:V1×V2R+w: V_1\times V_2 \mapsto \mathbb{R}_+, find a maximum weight matching M\mathcal{M} between nodes of the two trees, such that none of the matched nodes is an ancestor of another matched node in either of the trees. This generalization of the classical bipartite matching problem appears, for example, in the computational analysis of live cell video data. We show that the problem is APX\mathcal{APX}-hard and thus, unless P=NP\mathcal{P} = \mathcal{NP}, disprove a previous claim that it is solvable in polynomial time. Furthermore, we give a 22-approximation algorithm based on a combination of the local ratio technique and a careful use of the structure of basic feasible solutions of a natural LP-relaxation, which we also show to have an integrality gap of 2o(1)2-o(1). In the second part of the paper, we consider a natural generalization of the problem, where trees are replaced by partially ordered sets (posets). We show that the local ratio technique gives a 2kρ2k\rho-approximation for the kk-dimensional matching generalization of the problem, in which the maximum number of incomparable elements below (or above) any given element in each poset is bounded by ρ\rho. We finally give an almost matching integrality gap example, and an inapproximability result showing that the dependence on ρ\rho is most likely unavoidable

    On tree-constrained matchings and generalizations

    Get PDF

    On Tree-Constrained Matchings and Generalizations

    Get PDF
    International audienceWe consider the following Tree-Constrained Bipartite Matching problem: Given a bipartite graph G=(V1,V2,E) with edge weights w:E↦ℝ+w:E↦R+, a rooted tree T1 on the set V1 and a rooted tree T2 on the set V1, find a maximum weight matching M in G, such that none of the matched nodes is an ancestor of another matched node in either of the trees. This generalization of the classical bipartite matching problem appears, for example, in the computational analysis of live cell video data. We show that the problem is APX-hard and thus, unless =P=NP, disprove a previous claim that it is solvable in polynomial time. Furthermore, we give a 2-approximation algorithm based on a combination of the local ratio technique and a careful use of the structure of basic feasible solutions of a natural LP-relaxation, which we also show to have an integrality gap of 2−o(1).In the second part of the paper, we consider a natural generalization of the problem, where trees are replaced by partially ordered sets (posets). We show that the local ratio technique gives a 2kρ-approximation for the k-dimensional matching generalization of the problem, in which the maximum number of incomparable elements below (or above) any given element in each poset is bounded by ρ. We finally give an almost matching integrality gap example, and an inapproximability result showing that the dependence on ρ is most likely unavoidable

    The generalized Robinson-Foulds metric

    Get PDF
    The Robinson-Foulds (RF) metric is arguably the most widely used measure of phylogenetic tree similarity, despite its well-known shortcomings: For example, moving a single taxon in a tree can result in a tree that has maximum distance to the original one; but the two trees are identical if we remove the single taxon. To this end, we propose a natural extension of the RF metric that does not simply count identical clades but instead, also takes similar clades into consideration. In contrast to previous approaches, our model requires the matching between clades to respect the structure of the two trees, a property that the classical RF metric exhibits, too. We show that computing this generalized RF metric is, unfortunately, NP-hard. We then present a simple Integer Linear Program for its computation, and evaluate it by an all-against-all comparison of 100 trees from a benchmark data set. We find that matchings that respect the tree structure differ significantly from those that do not, underlining the importance of this natural condition.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    How many matchings cover the nodes of a graph?

    Full text link
    Given an undirected graph, are there kk matchings whose union covers all of its nodes, that is, a matching-kk-cover? A first, easy polynomial solution from matroid union is possible, as already observed by Wang, Song and Yuan (Mathematical Programming, 2014). However, it was not satisfactory neither from the algorithmic viewpoint nor for proving graphic theorems, since the corresponding matroid ignores the edges of the graph. We prove here, simply and algorithmically: all nodes of a graph can be covered with k2k\ge 2 matchings if and only if for every stable set SS we have SkN(S)|S|\le k\cdot|N(S)|. When k=1k=1, an exception occurs: this condition is not enough to guarantee the existence of a matching-11-cover, that is, the existence of a perfect matching, in this case Tutte's famous matching theorem (J. London Math. Soc., 1947) provides the right `good' characterization. The condition above then guarantees only that a perfect 22-matching exists, as known from another theorem of Tutte (Proc. Amer. Math. Soc., 1953). Some results are then deduced as consequences with surprisingly simple proofs, using only the level of difficulty of bipartite matchings. We give some generalizations, as well as a solution for minimization if the edge-weights are non-negative, while the edge-cardinality maximization of matching-22-covers turns out to be already NP-hard. We have arrived at this problem as the line graph special case of a model arising for manufacturing integrated circuits with the technology called `Directed Self Assembly'.Comment: 10 page

    Matchings in metric spaces, the dual problem and calibrations modulo 2

    Full text link
    We show that for a metric space with an even number of points there is a 1-Lipschitz map to a tree-like space with the same matching number. This result gives the first basic version of an unoriented Kantorovich duality. The study of the duality gives a version of global calibrations for 1-chains with coefficients in Z2\mathbb Z_2. Finally we extend the results to infinite metric spaces and present a notion of "matching dimension" which arises naturally.Comment: We corrected some typos and clarified some of the notations and formulations. The new version uses the New York Journal of Mathematics templat
    corecore