9,044 research outputs found

    DISCOVERING INTERESTING PATTERNS FOR INVESTMENT DECISION MAKING WITH GLOWER C - A GENETIC LEARNER OVERLAID WITH ENTROPY REDUCTION

    Get PDF
    Prediction in financial domains is notoriously difficult for a number of reasons. First, theories tend to be weak or non-existent, which makes problem formulation open-ended by forcing us to consider a large number of independent variables and thereby increasing the dimensionality of the search space. Second, the weak relationships among variables tend to be nonlinear, and may hold only in limited areas of the search space. Third, in financial practice, where analysts conduct extensive manual analysis of historically well performing indicators, a key is to find the hidden interactions among variables that perform well in combination. Unfortunately, these are exactly the patterns that the greedy search biases incorporated by many standard rule algorithms will miss. In this paper, we describe and evaluate several variations of a new genetic learning algorithm (GLOWER) on a variety of data sets. The design of GLOWER has been motivated by financial prediction problems, but incorporates successful ideas from tree induction and rule learning. We examine the performance of several GLOWER variants on two UCI data sets as well as on a standard financial prediction problem (S&P500 stock returns), using the results to identify and use one of the better variants for further comparisons. We introduce a new (to KDD) financial prediction problem (predicting positive and negative earnings surprises), and experiment withGLOWER, contrasting it with tree- and rule-induction approaches. Our results are encouraging, showing that GLOWER has the ability to uncover effective patterns for difficult problems that have weak structure and significant nonlinearities.Information Systems Working Papers Serie

    A neural network model to forecast and describe bond ratings

    Get PDF
    Neural Network;Bond Ratings;accountancy

    On the Road to a Unified Market for Energy Efficiency: The Contribution of White Certificates Schemes

    Get PDF
    White certificates schemes mandate competing energy companies to promote energy efficiency with flexibility mechanisms, including the trading of energy savings. So far, stylized facts are lacking and outcomes are mainly country-specific. By comparing results of British, Italian and French experiences, we attempt to identify the core determinants of their performances. We show that (i) white certificates schemes are depicted in theoretical works as mandatory subsidies on energy efficiency goods recovered by an end-use energy tax, whereby white certificates exchanges are not a central feature; (ii) at current stages, existing schemes are cost-effective and economically efficient, with large discrepancies though; (iii) the hybrid subsidy-tax mechanism seems valid but conditional to cost pass through permissions; otherwise, obliged energy companies merely promote information on the “downstream” side (i.e. at the consumer level); (iv) although white certificates exchange between different types of actors involved can be important as in Italy, trade among obliged companies is negligible; instead, flexibility sustains vertical relationships between obliged parties and “upstream” partners (i.e. installers, energy service companies). In this respect, we support the view that white certificates schemes are a policy instrument of multi-functional nature (subsidisation, information, technology diffusion), whose static and dynamic efficiency depends upon the consistency between a proper definition of long-term energy savings, the appropriate cost-recovery permission and a fine coordination with other instruments. We finally propose a four stages deployment pattern, along which fragmented markets for energy efficient technologies get closer to create a unified market delivering energy efficiency as a homogeneous good.White Certificates Schemes, Static Efficiency, Dynamic Efficiency, Vertical Organisation, Policy Coordination

    DISCOVERING INTERESTING PATTERNS FOR INVESTMENT DECISION MAKING WITH GLOWER C - A GENETIC LEARNER OVERLAID WITH ENTROPY REDUCTION

    Get PDF
    Prediction in financial domains is notoriously difficult for a number of reasons. First, theories tend to be weak or non-existent, which makes problem formulation open-ended by forcing us to consider a large number of independent variables and thereby increasing the dimensionality of the search space. Second, the weak relationships among variables tend to be nonlinear, and may hold only in limited areas of the search space. Third, in financial practice, where analysts conduct extensive manual analysis of historically well performing indicators, a key is to find the hidden interactions among variables that perform well in combination. Unfortunately, these are exactly the patterns that the greedy search biases incorporated by many standard rule algorithms will miss. In this paper, we describe and evaluate several variations of a new genetic learning algorithm (GLOWER) on a variety of data sets. The design of GLOWER has been motivated by financial prediction problems, but incorporates successful ideas from tree induction and rule learning. We examine the performance of several GLOWER variants on two UCI data sets as well as on a standard financial prediction problem (S&P500 stock returns), using the results to identify and use one of the better variants for further comparisons. We introduce a new (to KDD) financial prediction problem (predicting positive and negative earnings surprises), and experiment withGLOWER, contrasting it with tree- and rule-induction approaches. Our results are encouraging, showing that GLOWER has the ability to uncover effective patterns for difficult problems that have weak structure and significant nonlinearities.Information Systems Working Papers Serie

    Artificial Neural Networks in Finance Modelling

    Get PDF
    The study of Artificial Neural Networks derives from first trials to translate in mathematical models the principles of biological “processing”. An Artificial Neural Network deals with generating, in the fastest times, an implicit and predictive model of the evolution of a system. In particular, it derives from experience its ability to be able to recognize some behaviours or situations and to “suggest” how to take them into account. This work illustrates an approach to the use of Artificial Neural Networks for Financial Modelling; we aim to explore the structural differences (and implications) between one- and multi- agent and population models. In one-population models, ANNs are involved as forecasting devices with wealth-maximizing agents (in which agents make decisions so as to achieve an utility maximization following non- linear models to do forecasting), while in multi-population models agents do not follow predetermined rules, but tend to create their own behavioural rules as market data are collected. In particular, it is important to analyze diversities between one-agent and one-population models; in fact, in building one-population model it is possible to illustrate the market equilibrium endogenously, which is not possible in one-agent model where all the environmental characteristics are taken as given and beyond the control of the single agent. A particular application we aim to study is the one regarding “customer profiling”, in which (based on personal and direct relationships) the “buying” behaviour of each customer can be defined, making use of behavioural inference models such as the ones offered by Artificial Neural Networks much better than traditional statistical methodologies.Artificial Neural Network, Financial Modelling, Customer Profiling

    Artificial Neural Networks in Financial Modelling

    Get PDF
    The study of Artificial Neural Networks derives from first trials to translate in mathematical models the principles of biological processing. An Artificial Neural Network deals with generating, in the fastest times, an implicit and predictive model of the evolution of a system. In particular, it derives from experience its ability to be able to recognize some behaviours or situations and to suggest how to take them into account. This work illustrates an approach to the use of Artificial Neural Networks for Financial Modelling; we aim to explore the structural differences (and implications) between one- and multi- agent and population models. In one-population models, ANNs are involved as forecasting devices with wealth-maximizing agents (in which agents make decisions so as to achieve an utility maximization following non-linear models to do forecasting), while in multipopulation models agents do not follow predetermined rules, but tend to create their own behavioural rules as market data are collected. In particular, it is important to analyze diversities between one-agent and one-population models; in fact, in building one-population model it is possible to illustrate the market equilibrium endogenously, which is not possible in one-agent model where all the environmental characteristics are taken as given and beyond the control of the single agent.artificial neural network, financial modelling, population model, market equilibrium.

    On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters

    Get PDF
    This paper casts coordination of a team of robots within the framework of game theoretic learning algorithms. In particular a novel variant of fictitious play is proposed, by considering multi-model adaptive filters as a method to estimate other players’ strategies. The proposed algorithm can be used as a coordination mechanism between players when they should take decisions under uncertainty. Each player chooses an action after taking into account the actions of the other players and also the uncertainty. Uncertainty can occur either in terms of noisy observations or various types of other players. In addition, in contrast to other game-theoretic and heuristic algorithms for distributed optimisation, it is not necessary to find the optimal parameters a priori. Various parameter values can be used initially as inputs to different models. Therefore, the resulting decisions will be aggregate results of all the parameter values. Simulations are used to test the performance of the proposed methodology against other game-theoretic learning algorithms.</p
    corecore