314 research outputs found

    How sufficient conditions are related for topology-preserving reductions

    Get PDF
    A crucial issue in digital topology is to ensure topology preservation for reductions acting on binary pictures (i.e., operators that never change a white point to black one). Some sufficient conditions for topology-preserving reductions have been proposed for pictures on the three possible regular partitionings of the plane (i.e., the triangular, the square, and the hexagonal grids). In this paper, the relationships among these conditions are stated

    Powerful Parallel Symmetric 3D Thinning Schemes Based on Critical Kernels

    Get PDF
    The main contribution of the present article consists of new 3D parallel and symmetric thinning schemes which have the following qualities: - They are effective and sound, in the sense that they are guaranteed to preserve topology. This guarantee is obtained thanks to a theorem on critical kernels; - They are powerful, in the sense that they remove more points, in one iteration, than any other symmetric parallel thinning scheme; - They are versatile, as conditions for the preservation of geometrical features (e.g., curve extremities or surface borders) are independent of those accounting for topology preservation; - They are efficient: we provide in this article a small set of masks, acting in the grid Z3, that is sufficient, in addition to the classical simple point test, to straightforwardly implement them

    An analysis of surface area estimates of binary volumes under three tilings

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (leaves 77-79).by Erik G. Miller.M.S

    Acta Cybernetica : Volume 23. Number 3.

    Get PDF

    Topology on digital label images

    Get PDF
    International audienceIn digital imaging, after several decades devoted to the study of topological properties of binary images, there is an increasing need of new methods enabling to take into (topological) consideration n-ary images (also called label images). Indeed, while binary images enable to handle one object of interest, label images authorise to simultaneously deal with a plurality of objects, which is a frequent requirement in several application fields. In this context, one of the main purposes is to propose topology-preserving transformation procedures for such label images, thus extending the ones (e.g., growing, reduction, skeletonisation) existing for binary images. In this article, we propose, for a wide range of digital images, a new approach that permits to locally modify a label image, while preserving not only the topology of each label set, but also the topology of any arrangement of the labels understood as the topology of any union of label sets. This approach enables in particular to unify and extend some previous attempts devoted to the same purpose

    High Resolution Maps of the Vasculature of An Entire Organ

    Get PDF
    The structure of vascular networks represents a great, unsolved problem in anatomy. Network geometry and topology differ dramatically from left to right and person to person as evidenced by the superficial venation of the hands and the vasculature of the retinae. Mathematically, we may state that there is no conserved topology in vascular networks. Efficiency demands that these networks be regular on a statistical level and perhaps optimal. We have taken the first steps towards elucidating the principles underlying vascular organization, creating the rst map of the hierarchical vasculature (above the capillaries) of an entire organ. Using serial blockface microscopy and fluorescence imaging, we are able to identify vasculature at 5 ÎĽm resolution. We have designed image analysis software to segment, align, and skeletonize the resulting data, yielding a map of the individual vessels. We transformed these data into a mathematical graph, allowing computationally efficient storage and the calculation of geometric and topological statistics for the network. Our data revealed a complexity of structure unexpected by theory. We observe loops at all scales that complicate the assignment of hierarchy within the network and the existence of set length scales, implying a distinctly non-fractal structure of components within
    • …
    corecore