11,955 research outputs found

    Analysis of Multiserver Retrial Queueing System: A Martingale Approach and an Algorithm of Solution

    Full text link
    The paper studies a multiserver retrial queueing system with mm servers. Arrival process is a point process with strictly stationary and ergodic increments. A customer arriving to the system occupies one of the free servers. If upon arrival all servers are busy, then the customer goes to the secondary queue, orbit, and after some random time retries more and more to occupy a server. A service time of each customer is exponentially distributed random variable with parameter μ1\mu_1. A time between retrials is exponentially distributed with parameter μ2\mu_2 for each customer. Using a martingale approach the paper provides an analysis of this system. The paper establishes the stability condition and studies a behavior of the limiting queue-length distributions as μ2\mu_2 increases to infinity. As μ2→∞\mu_2\to\infty, the paper also proves the convergence of appropriate queue-length distributions to those of the associated `usual' multiserver queueing system without retrials. An algorithm for numerical solution of the equations, associated with the limiting queue-length distribution of retrial systems, is provided.Comment: To appear in "Annals of Operations Research" 141 (2006) 19-52. Replacement corrects a small number of misprint

    A Large Closed Queueing Network Containing Two Types of Node and Multiple Customer Classes: One Bottleneck Station

    Full text link
    The paper studies a closed queueing network containing two types of node. The first type (server station) is an infinite server queueing system, and the second type (client station) is a single server queueing system with autonomous service, i.e. every client station serves customers (units) only at random instants generated by strictly stationary and ergodic sequence of random variables. It is assumed that there are rr server stations. At the initial time moment all units are distributed in the server stations, and the iith server station contains NiN_i units, i=1,2,...,ri=1,2,...,r, where all the values NiN_i are large numbers of the same order. The total number of client stations is equal to kk. The expected times between departures in the client stations are small values of the order O(N−1)O(N^{-1}) ~ (N=N1+N2+...+Nr)(N=N_1+N_2+...+N_r). After service completion in the iith server station a unit is transmitted to the jjth client station with probability pi,jp_{i,j} ~ (j=1,2,...,kj=1,2,...,k), and being served in the jjth client station the unit returns to the iith server station. Under the assumption that only one of the client stations is a bottleneck node, i.e. the expected number of arrivals per time unit to the node is greater than the expected number of departures from that node, the paper derives the representation for non-stationary queue-length distributions in non-bottleneck client stations.Comment: 39 pages, 5 figure
    • …
    corecore