1,694 research outputs found

    On Time-Bandwidth Product of Multi-Soliton Pulses

    Full text link
    Multi-soliton pulses are potential candidates for fiber optical transmission where the information is modulated and recovered in the so-called nonlinear Fourier domain. While this is an elegant technique to account for the channel nonlinearity, the obtained spectral efficiency, so far, is not competitive with the classic Nyquist-based schemes. In this paper, we study the evolution of the time-bandwidth product of multi-solitons as they propagate along the optical fiber. For second and third order soliton pulses, we numerically optimize the pulse shapes to achieve the smallest time-bandwidth product when the phase of the spectral amplitudes is used for modulation. Moreover, we analytically estimate the pulse-duration and bandwidth of multi-solitons in some practically important cases. Those estimations enable us to approximate the time-bandwidth product for higher order solitons.Comment: Accepted for ISIT 201

    Information Transmission using the Nonlinear Fourier Transform, Part III: Spectrum Modulation

    Full text link
    Motivated by the looming "capacity crunch" in fiber-optic networks, information transmission over such systems is revisited. Among numerous distortions, inter-channel interference in multiuser wavelength-division multiplexing (WDM) is identified as the seemingly intractable factor limiting the achievable rate at high launch power. However, this distortion and similar ones arising from nonlinearity are primarily due to the use of methods suited for linear systems, namely WDM and linear pulse-train transmission, for the nonlinear optical channel. Exploiting the integrability of the nonlinear Schr\"odinger (NLS) equation, a nonlinear frequency-division multiplexing (NFDM) scheme is presented, which directly modulates non-interacting signal degrees-of-freedom under NLS propagation. The main distinction between this and previous methods is that NFDM is able to cope with the nonlinearity, and thus, as the the signal power or transmission distance is increased, the new method does not suffer from the deterministic cross-talk between signal components which has degraded the performance of previous approaches. In this paper, emphasis is placed on modulation of the discrete component of the nonlinear Fourier transform of the signal and some simple examples of achievable spectral efficiencies are provided.Comment: Updated version of IEEE Transactions on Information Theory, vol. 60, no. 7, pp. 4346--4369, July, 201

    Vector Dissipative Solitons in Graphene Mode Locked Fiber Lasers

    Full text link
    Vector soliton operation of erbium-doped fiber lasers mode locked with atomic layer graphene was experimentally investigated. Either the polarization rotation or polarization locked vector dissipative solitons were experimentally obtained in a dispersion-managed cavity fiber laser with large net cavity dispersion, while in the anomalous dispersion cavity fiber laser, the phase locked NLSE solitons and induced NLSE soliton were experimentally observed. The vector soliton operation of the fiber lasers unambiguously confirms the polarization insensitive saturable absorption of the atomic layer graphene when the light is incident perpendicular to its 2D atomic layer

    Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker

    Full text link
    Due to its unique electronic property and the Pauli Blocking Principle, atomic layer graphene possesses wavelength-independent ultrafast saturable absorption, which can be exploited for the ultrafast photonics application. Through chemical functionalization, a graphene-polymer nanocomposite membrane was fabricated and firstly used to mode lock a fiber laser. Stable mode locked solitons with 3 nJ pulse energy, 700 fs pulse width at the 1590 nm wavelength have been directly generated from the laser. We show that graphene-polymer nanocomposites could be an attractive saturable absorber for high power fiber laser mode locking.Comment: Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Applied Physics Letters, Accepte
    corecore