3,469 research outputs found

    A Census Of Highly Symmetric Combinatorial Designs

    Full text link
    As a consequence of the classification of the finite simple groups, it has been possible in recent years to characterize Steiner t-designs, that is t-(v,k,1) designs, mainly for t = 2, admitting groups of automorphisms with sufficiently strong symmetry properties. However, despite the finite simple group classification, for Steiner t-designs with t > 2 most of these characterizations have remained longstanding challenging problems. Especially, the determination of all flag-transitive Steiner t-designs with 2 < t < 7 is of particular interest and has been open for about 40 years (cf. [11, p. 147] and [12, p. 273], but presumably dating back to 1965). The present paper continues the author's work [20, 21, 22] of classifying all flag-transitive Steiner 3-designs and 4-designs. We give a complete classification of all flag-transitive Steiner 5-designs and prove furthermore that there are no non-trivial flag-transitive Steiner 6-designs. Both results rely on the classification of the finite 3-homogeneous permutation groups. Moreover, we survey some of the most general results on highly symmetric Steiner t-designs.Comment: 26 pages; to appear in: "Journal of Algebraic Combinatorics

    Some new results on the self-dual [120,60,24] code

    Full text link
    The existence of an extremal self-dual binary linear code of length 120 is a long-standing open problem. We continue the investigation of its automorphism group, proving that automorphisms of order 30 and 57 cannot occur. Supposing the involutions acting fixed point freely, we show that also automorphisms of order 8 cannot occur and the automorphism group is of order at most 120, with further restrictions. Finally, we present some necessary conditions for the existence of the code, based on shadow and design theory.Comment: 23 pages, 6 tables, to appear in Finite Fields and Their Application

    On the existence of block-transitive combinatorial designs

    Full text link
    Block-transitive Steiner tt-designs form a central part of the study of highly symmetric combinatorial configurations at the interface of several disciplines, including group theory, geometry, combinatorics, coding and information theory, and cryptography. The main result of the paper settles an important open question: There exist no non-trivial examples with t=7t=7 (or larger). The proof is based on the classification of the finite 3-homogeneous permutation groups, itself relying on the finite simple group classification.Comment: 9 pages; to appear in "Discrete Mathematics and Theoretical Computer Science (DMTCS)

    Resolvable Mendelsohn designs and finite Frobenius groups

    Full text link
    We prove the existence and give constructions of a (p(k)−1)(p(k)-1)-fold perfect resolvable (v,k,1)(v, k, 1)-Mendelsohn design for any integers v>k≥2v > k \ge 2 with v≡1mod  kv \equiv 1 \mod k such that there exists a finite Frobenius group whose kernel KK has order vv and whose complement contains an element ϕ\phi of order kk, where p(k)p(k) is the least prime factor of kk. Such a design admits K⋊⟨ϕ⟩K \rtimes \langle \phi \rangle as a group of automorphisms and is perfect when kk is a prime. As an application we prove that for any integer v=p1e1…ptet≥3v = p_{1}^{e_1} \ldots p_{t}^{e_t} \ge 3 in prime factorization, and any prime kk dividing piei−1p_{i}^{e_i} - 1 for 1≤i≤t1 \le i \le t, there exists a resolvable perfect (v,k,1)(v, k, 1)-Mendelsohn design that admits a Frobenius group as a group of automorphisms. We also prove that, if kk is even and divides pi−1p_{i} - 1 for 1≤i≤t1 \le i \le t, then there are at least φ(k)t\varphi(k)^t resolvable (v,k,1)(v, k, 1)-Mendelsohn designs that admit a Frobenius group as a group of automorphisms, where φ\varphi is Euler's totient function.Comment: Final versio

    Block-Transitive Designs in Affine Spaces

    Full text link
    This paper deals with block-transitive tt-(v,k,λ)(v,k,\lambda) designs in affine spaces for large tt, with a focus on the important index λ=1\lambda=1 case. We prove that there are no non-trivial 5-(v,k,1)(v,k,1) designs admitting a block-transitive group of automorphisms that is of affine type. Moreover, we show that the corresponding non-existence result holds for 4-(v,k,1)(v,k,1) designs, except possibly when the group is one-dimensional affine. Our approach involves a consideration of the finite 2-homogeneous affine permutation groups.Comment: 10 pages; to appear in: "Designs, Codes and Cryptography
    • …
    corecore