92 research outputs found

    On the Orthogonal Vector Problem and the Feasibility of Unconditionally Secure Leakage-Resilient Computation

    Get PDF
    We consider unconditionally secure leakage resilient two-party computation, where security means that the leakage obtained by an adversary can be simulated using a similar amount of leakage from the private inputs or outputs. A related problem is known as circuit compilation, where there is only one device doing a computation on public input and output. Here the goal is to ensure that the adversary learns only the input/output behaviour of the computation, even given leakage from the internal state of the device. We study these problems in an enhanced version of the ``only computation leaks\u27\u27 model, where the adversary is additionally allowed a bounded amount of {\em global} leakage from the state of the entity under attack. In this model, we show the first unconditionally secure leakage resilient two-party computation protocol. The protocol assumes access to correlated randomness in the form of a functionality \fOrt that outputs pairs of orthogonal vectors (u,v)(\vec{u}, \vec{v}) over some finite field, where the adversary can leak independently from u\vec{u} and from v\vec{v}. We also construct a general circuit compiler secure in the same leakage model. Our constructions work, even if the adversary is allowed to corrupt a constant fraction of the calls to \fOrt and decide which vectors should be output. On the negative side, we show that unconditionally secure two-party computation and circuit compilation are in general impossible in the plain version of our model. For circuit compilation we need a computational assumption to exhibit a function that cannot be securely computed, on the other hand impossibility holds even if global leakage is not allowed. It follows that even a somewhat unreliable version of \fOrt cannot be implemented with unconditional security in the plain leakage model, using classical communication. However, we show that an implementation using quantum communication does exist. In particular, we propose a simple ``prepare-and-measure\u27\u27 type protocol which we show secure using a new result on sampling from a quantum population. Although the protocol may produce a small number of incorrect pairs, this is sufficient for leakage resilient computation by our other results

    Quantum Cryptography Beyond Quantum Key Distribution

    Get PDF
    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries---including the impossibility of quantum bit commitment, the difficulty of quantum rewinding and the definition of quantum security models for classical primitives. In this review article, aimed primarily at cryptographers unfamiliar with the quantum world, we survey the area of theoretical quantum cryptography, with an emphasis on the constructions and limitations beyond the realm of QKD.Comment: 45 pages, over 245 reference

    Secure certification of mixed quantum states with application to two-party randomness generation

    Get PDF
    We investigate sampling procedures that certify that an arbitrary quantum state on nn subsystems is close to an ideal mixed state φn\varphi^{\otimes n} for a given reference state φ\varphi, up to errors on a few positions. This task makes no sense classically: it would correspond to certifying that a given bitstring was generated according to some desired probability distribution. However, in the quantum case, this is possible if one has access to a prover who can supply a purification of the mixed state. In this work, we introduce the concept of mixed-state certification, and we show that a natural sampling protocol offers secure certification in the presence of a possibly dishonest prover: if the verifier accepts then he can be almost certain that the state in question has been correctly prepared, up to a small number of errors. We then apply this result to two-party quantum coin-tossing. Given that strong coin tossing is impossible, it is natural to ask "how close can we get". This question has been well studied and is nowadays well understood from the perspective of the bias of individual coin tosses. We approach and answer this question from a different---and somewhat orthogonal---perspective, where we do not look at individual coin tosses but at the global entropy instead. We show how two distrusting parties can produce a common high-entropy source, where the entropy is an arbitrarily small fraction below the maximum (except with negligible probability)

    Secure certification of mixed quantum states with application to two-party randomness generation

    Get PDF
    We investigate sampling procedures that certify that an arbitrary quantum state on n subsystems is close to an ideal mixed state ⊗ for a given reference state , up to errors on a few positions. This task makes no sense classically: it would correspond to certifying that a given bitstring was generated according to some desired probability distribution. However, in the quantum case, this is possible if one has access to a prover who can supply a purification of the mixed state. In this work, we introduce the concept of mixed-state certification, and we show that a natural sampling protocol offers secure certification in the presence of a possibly dishonest prover: if the verifier accepts then he can be almost certain that the state in question has been correctly prepared, up to a small number of errors. We then apply this result to two-party quantum coin-tossing. Given that strong coin tossing is impossible, it is natural to ask “how close can we get”. This question has been well studied and is nowadays well understood from the perspective of the bias of individual coin tosses. We approach and answer this question from a different—and somewhat orthogonal—perspective, where we do not look at individual coin tosses but at the global entropy instead. We show how two distrusting parties can produce a common high-entropy source, where the entropy is an arbitrarily small fraction below the maximum

    A Survey of Leakage-Resilient Cryptography

    Get PDF
    In the past 15 years, cryptography has made considerable progress in expanding the adversarial attack model to cover side-channel attacks, and has built schemes to provably defend against some of them. This survey covers the main models and results in this so-called leakage-resilient cryptography

    Classical processing algorithms for Quantum Information Security

    Get PDF
    In this thesis, we investigate how the combination of quantum physics and information theory could deliver solutions at the forefront of information security, and, in particular, we consider two focus applications: randomness extraction as applied to quantum random number generators and classical processing algorithms for quantum key distribution (QKD). We concentrate on practical applications for such tools. We detail the implementation of a randomness extractor for a commercial quantum random number generator, and we evaluate its performance based on information theory. Then, we focus on QKD as applied to a specific experimental scenario, that is, the one of free-space quantum links. Commercial solutions with quantum links operating over optical fibers, in fact, already exist, but suffer from severe infrastructure complexity and cost overheads. Free-space QKD allows for a higher flexibility, for both terrestrial and satellite links, whilst experiencing higher attenuation and noise at the receiver. In this work, its feasibility is investigated and proven in multiple experiments over links of different length, and in various channel conditions. In particular, after a thorough analysis of information reconciliation protocols, we consider finite-key effects as applied to key distillation, and we propose a novel adaptive real-time selection algorithm which, by leveraging the turbulence of the channel as a resource, extends the feasibility of QKD to new noise thresholds. By using a full-fledged software for classical processing tailored for the considered application scenario, the obtained results are analyzed and validated, showing that quantum information security can be ensured in realistic conditions with free-space quantum links

    Renewal periods for cryptographic keys

    Get PDF

    Secure multi-party protocols under a modern lens

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 263-272).A secure multi-party computation (MPC) protocol for computing a function f allows a group of parties to jointly evaluate f over their private inputs, such that a computationally bounded adversary who corrupts a subset of the parties can not learn anything beyond the inputs of the corrupted parties and the output of the function f. General MPC completeness theorems in the 1980s showed that every efficiently computable function can be evaluated securely in this fashion [Yao86, GMW87, CCD87, BGW88] using the existence of cryptography. In the following decades, progress has been made toward making MPC protocols efficient enough to be deployed in real-world applications. However, recent technological developments have brought with them a slew of new challenges, from new security threats to a question of whether protocols can scale up with the demand of distributed computations on massive data. Before one can make effective use of MPC, these challenges must be addressed. In this thesis, we focus on two lines of research toward this goal: " Protocols resilient to side-channel attacks. We consider a strengthened adversarial model where, in addition to corrupting a subset of parties, the adversary may leak partial information on the secret states of honest parties during the protocol. In presence of such adversary, we first focus on preserving the correctness guarantees of MPC computations. We then proceed to address security guarantees, using cryptography. We provide two results: an MPC protocol whose security provably "degrades gracefully" with the amount of leakage information obtained by the adversary, and a second protocol which provides complete security assuming a (necessary) one-time preprocessing phase during which leakage cannot occur. * Protocols with scalable communication requirements. We devise MPC protocols with communication locality: namely, each party only needs to communicate with a small (polylog) number of dynamically chosen parties. Our techniques use digital signatures and extend particularly well to the case when the function f is a sublinear algorithm whose execution depends on o(n) of the n parties' inputs.by Elette Chantae Boyle.Ph.D

    The Price of Active Security in Cryptographic Protocols

    Get PDF
    We construct the first actively-secure Multi-Party Computation (MPC) protocols with an arbitrary number of parties in the dishonest majority setting, for an arbitrary field F with constant communication overhead over the “passive-GMW” protocol (Goldreich, Micali and Wigderson, STOC ‘87). Our protocols rely on passive implementations of Oblivious Transfer (OT) in the boolean setting and Oblivious Linear function Evaluation (OLE) in the arithmetic setting. Previously, such protocols were only known over sufficiently large fields (Genkin et al. STOC ‘14) or a constant number of parties (Ishai et al. CRYPTO ‘08). Conceptually, our protocols are obtained via a new compiler from a passively-secure protocol for a distributed multiplication functionality FmultF_{mult} , to an actively-secure protocol for general functionalities. Roughly, FmultF_{mult} is parameterized by a linear-secret sharing scheme S, where it takes S-shares of two secrets and returns S-shares of their product. We show that our compilation is concretely efficient for sufficiently large fields, resulting in an over- head of 2 when securely computing natural circuits. Our compiler has two additional benefits: (1) it can rely on any passive implementation of FmultF_{mult}, which, besides the standard implementation based on OT (for boolean) and OLE (for arithmetic) allows us to rely on implementations based on threshold cryptosystems (Cramer et al. Eurocrypt ‘01); and (2) it can rely on weaker-than-passive (i.e., imperfect/leaky) implementations, which in some parameter regimes yield actively-secure protocols with overhead less than 2. Instantiating this compiler with an “honest-majority” implementation of FMULT, we obtain the first honest-majority protocol with optimal corruption threshold for boolean circuits with constant communication overhead over the best passive protocol (Damgård and Nielsen, CRYPTO ‘07)
    corecore