18,656 research outputs found

    Verifying the Safety of a Flight-Critical System

    Full text link
    This paper describes our work on demonstrating verification technologies on a flight-critical system of realistic functionality, size, and complexity. Our work targeted a commercial aircraft control system named Transport Class Model (TCM), and involved several stages: formalizing and disambiguating requirements in collaboration with do- main experts; processing models for their use by formal verification tools; applying compositional techniques at the architectural and component level to scale verification. Performed in the context of a major NASA milestone, this study of formal verification in practice is one of the most challenging that our group has performed, and it took several person months to complete it. This paper describes the methodology that we followed and the lessons that we learned.Comment: 17 pages, 5 figure

    Hypersonic Research Vehicle (HRV) real-time flight test support feasibility and requirements study. Part 2: Remote computation support for flight systems functions

    Get PDF
    The requirements are assessed for the use of remote computation to support HRV flight testing. First, remote computational requirements were developed to support functions that will eventually be performed onboard operational vehicles of this type. These functions which either cannot be performed onboard in the time frame of initial HRV flight test programs because the technology of airborne computers will not be sufficiently advanced to support the computational loads required, or it is not desirable to perform the functions onboard in the flight test program for other reasons. Second, remote computational support either required or highly desirable to conduct flight testing itself was addressed. The use is proposed of an Automated Flight Management System which is described in conceptual detail. Third, autonomous operations is discussed and finally, unmanned operations

    Space robotics: Recent accomplishments and opportunities for future research

    Get PDF
    The Langley Guidance, Navigation, and Control Technical Committee (GNCTC) was one of six technical committees created in 1991 by the Chief Scientist, Dr. Michael F. Card. During the kickoff meeting Dr. Card charged the chairmen to: (1) establish a cross-Center committee; (2) support at least one workshop in a selected discipline; and (3) prepare a technical paper on recent accomplishments in the discipline and on opportunities for future research. The Guidance, Navigation, and Control Committee was formed and selected for focus on the discipline of Space robotics. This report is a summary of the committee's assessment of recent accomplishments and opportunities for future research. The report is organized as follows. First is an overview of the data sources used by the committee. Next is a description of technical needs identified by the committee followed by recent accomplishments. Opportunities for future research ends the main body of the report. It includes the primary recommendation of the committee that NASA establish a national space facility for the development of space automation and robotics, one element of which is a telerobotic research platform in space. References 1 and 2 are the proceedings of two workshops sponsored by the committee during its June 1991, through May 1992 term. The focus of the committee for the June 1992 - May 1993 term will be to further define to the recommended platform in space and to add an additional discipline which includes aircraft related GN&C issues. To the latter end members performing aircraft related research will be added to the committee. (A preliminary assessment of future opportunities in aircraft-related GN&C research has been included as appendix A.

    UltraSwarm: A Further Step Towards a Flock of Miniature Helicopters

    Get PDF
    We describe further progress towards the development of a MAV (micro aerial vehicle) designed as an enabling tool to investigate aerial flocking. Our research focuses on the use of low cost off the shelf vehicles and sensors to enable fast prototyping and to reduce development costs. Details on the design of the embedded electronics and the modification of the chosen toy helicopter are presented, and the technique used for state estimation is described. The fusion of inertial data through an unscented Kalman filter is used to estimate the helicopter’s state, and this forms the main input to the control system. Since no detailed dynamic model of the helicopter in use is available, a method is proposed for automated system identification, and for subsequent controller design based on artificial evolution. Preliminary results obtained with a dynamic simulator of a helicopter are reported, along with some encouraging results for tackling the problem of flocking

    A Comparison Between Coupled and Decoupled Vehicle Motion Controllers Based on Prediction Models

    Get PDF
    In this work, a comparative study is carried out with two different predictive controllers that consider the longitudinal jerk and steering rate change as additional parameters, as additional parameters, so that comfort constraints can be included. Furthermore, the approaches are designed so that the effect of longitudinal and lateral motion control coupling can be analyzed. This way, the first controller is a longitudinal and lateral coupled MPC approach based on a kinematic model of the vehicle, while the second is a decoupled strategy based on a triple integrator model based on MPC for the longitudinal control and a double proportional curvature control for the lateral motion control. The control architecture and motion planning are exhaustively explained. The comparative study is carried out using a test vehicle, whose dynamics and low-level controllers have been simulated using the realistic simulation environment Dynacar. The performed tests demonstrate the effectiveness of both approaches in speeds higher than 30 km/h, and demonstrate that the coupled strategy provides better performance than the decoupled one. The relevance of this work relies in the contribution of vehicle motion controllers considering the comfort and its advantage over decoupled alternatives for future implementation in real vehicles.This work has been conducted within the ENABLE-S3 project that has received funding from the ECSEL Joint Undertaking under Grant Agreement No 692455. This work was developed at Tecnalia Research & Innovation facilities supporting this research

    Path design and receding horizon control for collision avoidance system of cars

    Get PDF
    The paper deals with path design and control realization problems of collision avoidance systems (CAS) of cars (ground vehicles). CAS emergency path design is based on the principle of elastic band with improved reaction forces for road borders and static obstacles allowing quick computation of the force equilibrium. The CAS path (reference signal) is smoothed and realized using receding horizon control (RHC). The car can be modelled by full (non-affine) or simplified (input affine) nonlinear models. The nonlinear predictive control problem is solved by using time varying linearization along appropriately chosen nominal control and state sequences, and analytical solution of the minimization of a quadratic criterion satisfying end-constraint. Differential geometric approach (DGA), known from control literature for the input affine nonlinear model, has been used for control initialization in the first horizon. For state estimation Kalman filters and measurements of two antenna GPS and Inertial Navigation System (INS) are used. A stand-alone software has been been developed using the C Compiler of MATLAB R2006a satisfying real time expectations

    Information flow and cooperative control of vehicle formations

    Get PDF
    We consider the problem of cooperation among a collection of vehicles performing a shared task using intervehicle communication to coordinate their actions. Tools from algebraic graph theory prove useful in modeling the communication network and relating its topology to formation stability. We prove a Nyquist criterion that uses the eigenvalues of the graph Laplacian matrix to determine the effect of the communication topology on formation stability. We also propose a method for decentralized information exchange between vehicles. This approach realizes a dynamical system that supplies each vehicle with a common reference to be used for cooperative motion. We prove a separation principle that decomposes formation stability into two components: Stability of this is achieved information flow for the given graph and stability of an individual vehicle for the given controller. The information flow can thus be rendered highly robust to changes in the graph, enabling tight formation control despite limitations in intervehicle communication capability

    A path planning and path-following control framework for a general 2-trailer with a car-like tractor

    Full text link
    Maneuvering a general 2-trailer with a car-like tractor in backward motion is a task that requires significant skill to master and is unarguably one of the most complicated tasks a truck driver has to perform. This paper presents a path planning and path-following control solution that can be used to automatically plan and execute difficult parking and obstacle avoidance maneuvers by combining backward and forward motion. A lattice-based path planning framework is developed in order to generate kinematically feasible and collision-free paths and a path-following controller is designed to stabilize the lateral and angular path-following error states during path execution. To estimate the vehicle state needed for control, a nonlinear observer is developed which only utilizes information from sensors that are mounted on the car-like tractor, making the system independent of additional trailer sensors. The proposed path planning and path-following control framework is implemented on a full-scale test vehicle and results from simulations and real-world experiments are presented.Comment: Preprin
    corecore