15,493 research outputs found

    Construction of quasi-cyclic self-dual codes

    Get PDF
    There is a one-to-one correspondence between ℓ\ell-quasi-cyclic codes over a finite field Fq\mathbb F_q and linear codes over a ring R=Fq[Y]/(Ym−1)R = \mathbb F_q[Y]/(Y^m-1). Using this correspondence, we prove that every ℓ\ell-quasi-cyclic self-dual code of length mℓm\ell over a finite field Fq\mathbb F_q can be obtained by the {\it building-up} construction, provided that char (Fq)=2(\mathbb F_q)=2 or q≡1(mod4)q \equiv 1 \pmod 4, mm is a prime pp, and qq is a primitive element of Fp\mathbb F_p. We determine possible weight enumerators of a binary ℓ\ell-quasi-cyclic self-dual code of length pℓp\ell (with pp a prime) in terms of divisibility by pp. We improve the result of [3] by constructing new binary cubic (i.e., ℓ\ell-quasi-cyclic codes of length 3ℓ3\ell) optimal self-dual codes of lengths 30,36,42,4830, 36, 42, 48 (Type I), 54 and 66. We also find quasi-cyclic optimal self-dual codes of lengths 40, 50, and 60. When m=5m=5, we obtain a new 8-quasi-cyclic self-dual [40,20,12][40, 20, 12] code over F3\mathbb F_3 and a new 6-quasi-cyclic self-dual [30,15,10][30, 15, 10] code over F4\mathbb F_4. When m=7m=7, we find a new 4-quasi-cyclic self-dual [28,14,9][28, 14, 9] code over F4\mathbb F_4 and a new 6-quasi-cyclic self-dual [42,21,12][42,21,12] code over F4\mathbb F_4.Comment: 25 pages, 2 tables; Finite Fields and Their Applications, 201

    The Perfect Binary One-Error-Correcting Codes of Length 15: Part II--Properties

    Full text link
    A complete classification of the perfect binary one-error-correcting codes of length 15 as well as their extensions of length 16 was recently carried out in [P. R. J. \"Osterg{\aa}rd and O. Pottonen, "The perfect binary one-error-correcting codes of length 15: Part I--Classification," IEEE Trans. Inform. Theory vol. 55, pp. 4657--4660, 2009]. In the current accompanying work, the classified codes are studied in great detail, and their main properties are tabulated. The results include the fact that 33 of the 80 Steiner triple systems of order 15 occur in such codes. Further understanding is gained on full-rank codes via switching, as it turns out that all but two full-rank codes can be obtained through a series of such transformations from the Hamming code. Other topics studied include (non)systematic codes, embedded one-error-correcting codes, and defining sets of codes. A classification of certain mixed perfect codes is also obtained.Comment: v2: fixed two errors (extension of nonsystematic codes, table of coordinates fixed by symmetries of codes), added and extended many other result
    • …
    corecore